1        Conformal FDTD engine - General Information

1.1         Fundamentals of the Method of Analysis

1.2         FDTD Method in QuickWave Software

2        Materials

2.1         PEC

2.2         PMC

2.3         Metallic

2.4         Dielectric Isotropic

2.5         Dielectric Anisotropic

2.6         Dielectric Dispersive

2.7         Dielectric Dispersive Anisotropic

2.8         Dielectric Dispersive Nonlinear

2.9         Cold Plasma

2.10      Metamaterial

2.11      Ferrite

2.12      Temperature dependent materials

2.13      Other materials

2.13.1        Infinitely thin metal layers

2.13.2        Lossy wires

2.13.3        Contours

2.14      Remarks

3        Boundary Conditions

3.1         Electric Boundary Conditions

3.2         Magnetic Boundary Conditions

3.3         Absorbing Boundary Conditions

3.3.1     Perfectly Matched Layer (PML)

3.3.2     MUR with superabsorption

3.4         Periodic Boundary Conditions

3.5         Asymptotic Boundary Conditions (wire grids)

4        Mesh

4.1         Conformal Approximation for Irregular Geometries

4.2         Manual Meshing

4.3         Automatic Meshing

4.4         Mesh Refinement

4.5         Mesh Snapping

4.5.1     Mesh snapping planes types

4.5.1.1      Electric

4.5.1.2      Magnetic

4.5.1.3      Neutral

4.5.1.4      Suspended

4.5.2     Manual snapping

4.5.3     Automatic snapping

4.6         Limiting the meshing area

5        Excitation

5.1         Excitation types

5.1.1     Transmission line port excitation

5.1.2     Point source

5.1.2.1      Lumped resistive source

5.1.2.2      Ideal voltage and current source

5.1.3     Free space incident wave

5.1.3.1      Plane wave excitation

5.1.3.2      2D and 3D Gaussian beam excitation

5.2         Load types

5.2.1     Transmission line port termination

5.2.2     Point probe

5.2.3     Lumped impedance element

5.3         Multipoint excitation

5.4         Excitation waveforms

5.4.1     Pre-defined signal library

5.4.2     User defined signal excitation

5.5         Template mode generation procedure

5.5.1     Dynamic templates

5.5.1.1      Physical parameters of template generation:

5.5.1.2      Fundamentals of template generation in FDTD:

5.5.1.3      Automatic

5.5.1.4      Analytical

5.5.1.5      Manual

5.5.1.6      Switching from automatic to manual mode generation

5.5.2     Quasi-static (TEM) template

5.6         Generation of circular polarisation

5.7         Determination of input power

6        Processings

6.1         Co - Processings

6.1.1     Electromagnetic fields

6.1.2     Poynting vector

6.1.3     Dissipated power and dissipated power density

6.1.4     SAR

6.1.5     Temperature and enthalpy density

6.1.6     Effective Media Parameters

6.1.7     Surface currents

6.1.8     Monitoring along specified line and versus time

6.1.9     Attenuation, S11, and SWR

6.1.10        Time-Domain Reflectometry

6.1.11        Power dissipated, energy stored and Q-factors

6.1.11.1         In electric and magnetic field

6.1.11.2         In the lossy volume

6.1.11.3         For periodic structures

6.1.12        Time integral of power dissipated

6.1.13        Average Temperature

6.1.14        Average Enthalpy

6.1.15        Excitation waveform

6.1.15.1         Dynamic waveform

6.1.15.2         Saved waveform

6.2         Post-Processings

6.2.1     S-Parameters

6.2.2     Frequency dependent wave impedance

6.2.3     Frequency dependent propagation constant

6.2.4     Power Balance

6.2.5     Frequency dependent Standing Wave Ratio and Group Delay

6.2.6     Power Available from the source

6.2.7     Energy available from the source

6.2.8     Below cutoff calculations

6.2.9     Radiation and Scattering

6.2.9.1      Radiation patterns

6.2.9.2      Scattering patterns

6.2.9.3      Radiation pattern at chosen Huygens surface

6.2.9.4      Radiation pattern in an arbitrary isotropic medium

6.2.9.5      Antenna Gain

6.2.9.6      Radiated Power

6.2.9.7      Radiation Efficiency

6.2.9.8      Radiation Resistance

6.2.9.9      Power injected by source

6.2.9.10         Current injected by source

6.2.9.11         Linear Polarisation

6.2.9.12         Circular Polarisation

6.2.9.13         Axial Ratio

6.2.9.14         Far field 3D radiation pattern

6.2.10        Radiation at Fixed Angle versus frequency

6.2.11        Impulse response in the far-field

6.2.12        Fields Monitoring

6.2.13        Time integration of the Poynting vector

6.2.14        FD-Probing

6.2.14.1         Analysis of Eigenvalue Problems

6.2.14.2         Field Integration along an arbitrary path

6.2.14.3         Embedding Impedance for Lumped Elements

6.2.14.4         Currents Induced in Wires

7        Advanced Options and Operation Regimes

7.1         Effective FDTD mesh grid

7.2         Conformal FDTD algorithm parameters

7.3         Stability factor

7.4         Energy simulation stop criterion

7.5         Parameters Sweep

7.5.1     Geometry parameters

7.5.2     Material parameters

7.5.3     Radiation frequency

7.5.4     Parameters Grid - range or specific values

7.5.5     Objectives results

7.5.6     Coupling with external applications

7.5.7     Batch mode

7.6         Suppress calculation options

7.6.1     Suppress singularity corrections

7.6.2     Suppress density and SAR

7.6.3     Suppress losses

7.7         Simulation Freeze

7.8         Simulation Slow down

7.9         Step by step simulation execution

7.10      Tasker mechanism

7.11      Batch run

7.12      Running in command line regime

7.13      Gradual excitation turning off

8        Import/Export Capabilities

8.1         Geometry

8.1.1     Import

8.1.2     Export

8.2         Time- and frequency-domain results

8.2.1     Import

8.2.2     Export

9        Simulation Acceleration

9.1         Multiprocessor/Multicore Computing

9.2         GPU Computing

9.3         Multi GPU Computing

10     Useful Information

10.1      Rules of thumb and hints for FDTD simulation in QuickWave

10.2      How to assure the proper mesh generation

10.3      Boolean operations on geometry

10.4      Memory requirements for simulation of a project

10.5      Forecasting the computing time

10.6      Simulation results convergence

10.7      Units

10.8      Warnings and errors