

Simulation-based resonant material measurement technique for precise characterization of LTCC and ULTCC materials towards 5G applications

M. Olszewska-Placha¹, D. Szwagierczak², and B. Synkiewicz-Musialska²

¹QWED Sp. z o.o., Warsaw, Poland

²Lukasiewicz-Institute of Microelectronics and Photonics, Krakow, Poland

Presented by: Bartlomiej Salski

NEMO 2022

Overview

Characterisation method - fundamentals, modelling, and measurement methodology

□ LTCC and ULTCC materials

Measurement results

G Summary

Split-Post Dielectric Resonator - basics

resonant mode with EM fields mostly confined in and between those ceramic posts
→ minimial losses in metal enclosure

₩₩₩€2022

• E-field tangential to SUT

 \rightarrow air slots between SUT and posts have negligible effect

- H-field is only vertical at the side wall of the enclosure → circumferential currents
 - \rightarrow no radiation through slot
 - \rightarrow easy SUT insertion through slot, no dismantling
- Field patterns remain practically unchanged

Split-Post Dielectric Resonator - modelling

Field patterns remain practically unchanged but resonant frequencies and Q-factors change, providing information about SUT material parameters

₩₩₩€2022

SUT of $\varepsilon_s = \varepsilon_s' - j \varepsilon_s''$ is inserted into DR: resonant frequency changes from f_e to f_s and Q-factor changes from Q_e to Q_s .

Non-linear functions – a need for electromagnetic modelling

$$\frac{f_e - f_s}{f_e} \approx \frac{h}{2C} \iint_{S} \left[\varepsilon'_s(x, y) - 1 \right] \left| E(x, y) \right|^2 dS$$
$$\frac{1}{Q_s} - \frac{1}{Q_e} \approx \frac{h}{C} \iint_{S} \varepsilon''_s(x, y) E^2(x, y) dS$$
$$C = \iiint_{V} \left| E(x, y) \right|^2 dV$$

QuickWave BOR simulations of 2.5GHz SPDR – economies in computer effort by 10³ or more compared to 3D simulations

Split-Post Dielectric Resonator – measurements 2022

Measurement setups

Laboratory-scale VNA

Hand-held VNA

Portable Microwave Q-Meter

NEMO 2022

SPDR measurements – accuracy and uncertainty

- Rigorous EM modelling behind the SPDR software and dedicated calibration of each device unit allows achieving accuracy of:
 - ±0.15% for dielectric constant (Dk)
 - ±3% (or 2 ·10⁻⁵, whichever is higher) for loss tangent (Df)
- Measurement uncertainty (resulting from uncertainty of sample thickness evaluation, resonant frequency and Q-factor extraction) needs to be evaluated as it may degrade the overall measurement error

SPDR measurements for reference materials 2022

- SPDR validated on reference materials:
 - Sapphire
 - Fused silica
 - Glass

	Sapphire		Fu	sed silica	Glass	
SPDR	Dk	Df	Dk	Df	Dk	Df
10GHz	9.4 ± 0.3%	0.00006 ± 2· 10 ⁻⁵	3.82 ± 0.5%	0.000053 ± 2 ⋅ 10 ⁻⁵	7.12 ± 0.5%	0.0125 ± 3%
15GHz	-	_	3.81 ± 0.5%	0.000240 ± 2 ⋅ 10 ⁻⁵	6.87 ± 2%	0.0171 ± 3%

**uncertainty for Dk is due to sample thickness variation*

LTCC and ULTCC materials (1)

- Low temperature co-fired ceramics (LTCC) and novel ultra-low temperature co-fired ceramic (ULTCC) materials
- Application to demanding 5G and 6G systems
- Gaining continuously growing interest due to:
 - Lowered sintering temperature (compared to HTCC),
 - keeping compatibility with already existing fabrication methods.
- LTCC and ULTCC materials are foreseen to deliver enhanced
 - manufacturing flexibility,
 - miniaturization,
 - packaging degree,
 - lower production cost,
 - higher sustainability,
 - environmental friendliness.
- Needed: Precise characterization with regards to complex permittivity (used in the electromagnetic design of telecommunication components).

LTCC test materials

LTCC substrate fabrication scheme

ULTCC test materials

ULTCC material fabrication scheme

- Materials have been prepared according to the conventional ceramic procedure:
 - solid state synthesis of oxide components,
 - ball milling,
 - uniaxial pressing of pellets.
- Sintering at 610-650 $^{\circ}$ C for 1 2h.
- ULTCC samples are based on new ceramic materials with a low dielectric permittivity:
 - Li₂WO₄ with 4 wt.% CuBi₂O₄,
 - LiBO₂ with 4 wt.% AlF₃-CaB₄O_{7.}
- Expected to have low dielectric constant and loss tangent, making them good candidates for laminar substrates for components dedicated to 5G systems.

Measurements results

SPDR measurements

Sample	Frequency [GHz]	Average thickness [mm]	Dielectric constant (Dk)	Loss tangent (Df)
CuB ₂ O ₄ LiBO ₂	10	0.715	5.28	0.007434
Zn ₄ B ₆ O ₁₃ _Zn ₂ SiO ₂	10	0.69	5.86	0.000550
Li ₂ WO ₄ +4% CuBi ₂ O ₄	15	0.485	5.39	0.001592
LiBO ₂ +4%AIF ₃ -CaB ₄ O ₇	15	0.55	4.50	0.003512

Measurement uncertainty due to sample thickness variation

	Minimum			Maximum			
Sample	thickness [mm]	Dk	Df	thickness [mm]	Dk	Df	Uncertainty of Dk ± [%]
CuB ₂ O ₄ LiBO ₂	0.65	5.70	0.007557	0.78	4.93	0.007318	7.94
Zn ₄ B ₆ O ₁₃ Zn ₂ SiO ₂	0.65	6.16	0.000555	0.73	5.60	0.000545	4.98
Li ₂ WO ₄ +4% CuBi ₂ O ₄	0.47	5.53	0.001600	0.5	5.26	0.001583	2.57
LiBO ₂ +4%AlF ₃ -CaB ₄ O ₇	0.53	4.63	0.003539	0.57	4.38	0.003486	2.93

Summary

Resonant-based method for complex permittivity measurement of laminar dielectrics has been discussed

□ Test materials of LTCC and ULTCC have been fabricated and measured

Materials composition have been chosen to achieve low complex permittivity, making the materials promising candidates for 5G substrates

□ SPDR measurement results confirm expectations for complex permittivity

Test samples thickness needs to be rigorously controlled to keep measurement uncertainty low

Acknowledgement

Part of this work was co-funded by the Polish National Centre for Research and Development under M-ERA.NET2/2020/1/2021 contract.

M-ERA.NET2 program received the funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 685451.

Ultra-Low Temperature Co-fired Ceramics for 6th Generation Electronic Packaging

International Consortium:

M-FRA NFT

Thank you for attention!

Questions?

molszewska@qwed.eu