

Simulation-based resonant material measurement technique for precise characterization of LTCC and ULTCC materials towards 5G applications

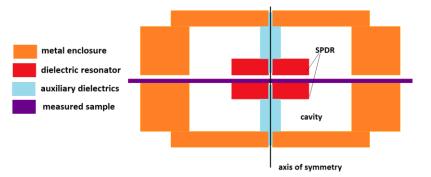
M. Olszewska-Placha¹, D. Szwagierczak², and B. Synkiewicz-Musialska²

¹QWED Sp. z o.o., Warsaw, Poland

²Lukasiewicz-Institute of Microelectronics and Photonics, Krakow, Poland

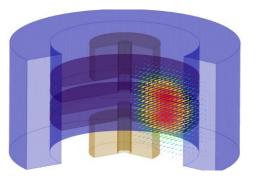
Presented by: Bartlomiej Salski

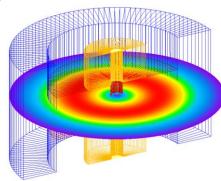
Overview

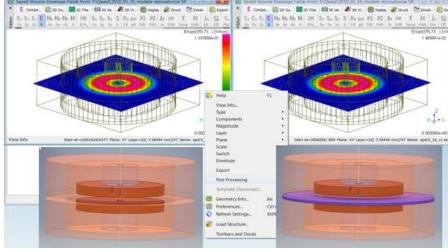

- ☐ Characterisation method fundamentals, modelling, and measurement methodology
- ☐ LTCC and ULTCC materials

☐ Measurement results

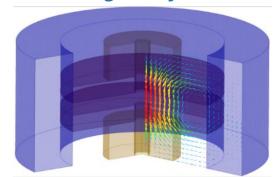
☐ Summary


Split-Post Dielectric Resonator - basics

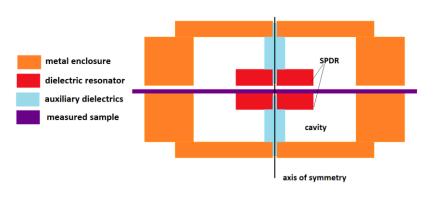




- resonant mode with EM fields mostly confined in and between those ceramic posts
 - → minimial losses in metal enclosure
- E-field tangential to SUT
 - → air slots between SUT and posts have negligible effect
- H-field is only vertical at the side wall of the enclosure → circumferential currents
 - → no radiation through slot
 - → easy SUT insertion through slot, no dismantling
- Field patterns remain practically unchanged


Electric field

Magnetic field



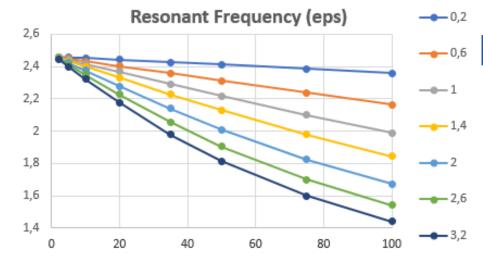
Sample in strong E-field nearly constant between the two posts

For laminar dielectrics and high-resistivity semiconductors

Split-Post Dielectric Resonator - modelling

Electric field

Field patterns remain practically unchanged but resonant frequencies and Q-factors change, providing information about SUT material parameters

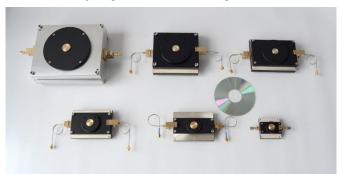

SUT of $\varepsilon_s = \varepsilon_s' - j \varepsilon_s''$ is inserted into DR: resonant frequency changes from f_e to f_s and Q-factor changes from Q_e to Q_s .

Non-linear functions – a need for electromagnetic modelling

$$\frac{f_e - f_s}{f_e} \approx \frac{h}{2C} \iint_{S} \left[\varepsilon'_s (x, y) - 1 \right] \left| E(x, y) \right|^2 dS$$

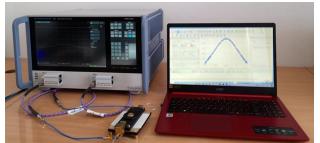
$$\frac{1}{Q_s} - \frac{1}{Q_e} \approx \frac{h}{C} \iint_{S} \varepsilon''_s (x, y) E^2(x, y) dS$$

$$C = \iiint_{S} \left| E(x, y) \right|^2 dV$$

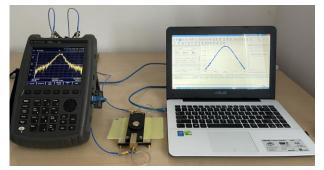


QuickWave BOR simulations of 2.5GHz SPDR – economies in computer effort by 10³ or more compared to 3D simulations

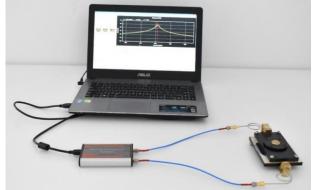
Data for dedicated software for material parameters extraction



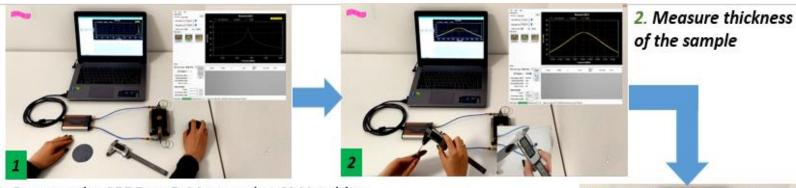
Family of SPDR test-fixtures



Split-Post Dielectric Resonator – measurements 2022

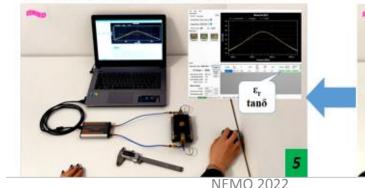

Measurement setups

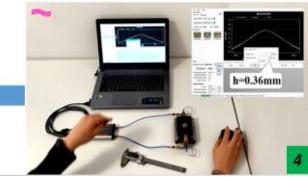
Laboratory-scale VNA



Hand-held VNA

Portable Microwave Q-Meter


Operation workflow – with the use of Q-Meter



- Connect the SPDR to Q-Meter using SMA cables.Connect Q-Meter to PC using USB cable.
- 1. Measure "empty SPDR" app invoked measurement.

Total measurement time: 30sec

5. Material parameters are extracted automatically

3. Insert the sample into SPDR

4. Insert the sample thickness into the PC app

SPDR measurements – accuracy and uncertainty

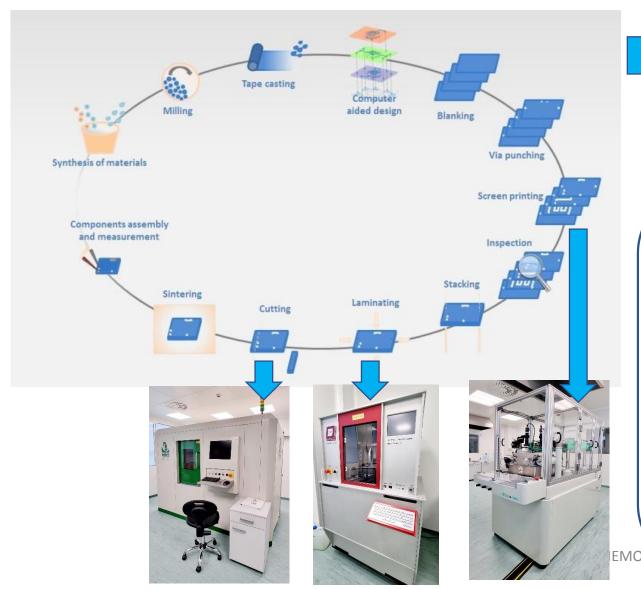
- Rigorous EM modelling behind the SPDR software and dedicated calibration of each device unit allows achieving accuracy of:
 - ±0.15% for dielectric constant (Dk)
 - ±3% (or 2 ·10⁻⁵, whichever is higher) for loss tangent (Df)
- Measurement uncertainty (resulting from uncertainty of sample thickness evaluation, resonant frequency and Q-factor extraction) needs to be evaluated as it may degrade the overall measurement error

SPDR measurements for reference materials 2022

- SPDR validated on reference materials:
 - Sapphire
 - Fused silica
 - Glass

	Sapphire		Fu	sed silica	Glass	
SPDR	Dk	Df	Dk	Df	Dk	Df
10GHz	9.4 ± 0.3%	0.00006 ± 2· 10 ⁻⁵	3.82 ± 0.5%	0.000053 ± 2· 10 ⁻⁵	7.12 ± 0.5%	0.0125 ± 3%
15GHz	-	<u>-</u>	3.81 ± 0.5%	0.000240 ± 2· 10 ⁻⁵	6.87 ± 2%	0.0171 ± 3%

^{*}uncertainty for Dk is due to sample thickness variation


LTCC and ULTCC materials (1)

- Low temperature co-fired ceramics (LTCC) and novel ultra-low temperature co-fired ceramic (ULTCC)
 materials
- Application to demanding 5G and 6G systems
- Gaining continuously growing interest due to:
 - Lowered sintering temperature (compared to HTCC),
 - keeping compatibility with already existing fabrication methods.
- LTCC and ULTCC materials are foreseen to deliver enhanced
 - manufacturing flexibility,
 - miniaturization,
 - packaging degree,
 - lower production cost,
 - higher sustainability,
 - environmental friendliness.
- Needed: Precise characterization with regards to complex permittivity (used in the electromagnetic design of telecommunication components).

LTCC test materials

****** 2**022

LTCC substrate fabrication scheme

Flexible tape to substrate

Test samples

CuB₂O₄_LiBO₄

35 x 45 mm

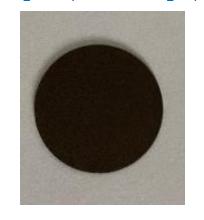
 $Zn_4B_6O_{13}$ Zn_2SiO_2

35 x 45 mm

Expected by chemical composition: Dk= 5-6

Df= 0.0005-0.01

ULTCC test materials



ULTCC material fabrication scheme

- Materials have been prepared according to the conventional ceramic procedure:
 - solid state synthesis of oxide components,
 - · ball milling,
 - uniaxial pressing of pellets.
- Sintering at 610-650° C for 1 2h.
- ULTCC samples are based on new ceramic materials with a low dielectric permittivity:
 - Li₂WO₄ with 4 wt.% CuBi₂O₄,
 - LiBO₂ with 4 wt.% AlF₃-CaB₄O_{7.}
- Expected to have low dielectric constant and loss tangent, making them good candidates for laminar substrates for components dedicated to 5G systems.

Test samples

 $Li_2WO_4+4\% CuBi_2O_4$

LiBO₂+4%AlF₃CaB₄O₇

φ=20 mm

Expected by chemical composition: Dk= 4-6.5

Df= 0.0005-0.005

NEMO 2022 10

Measurements results

SPDR measurements

Sample	Frequency [GHz]	Average thickness [mm]	Dielectric constant (Dk)	Loss tangent (Df)
CuB ₂ O ₄ _LiBO ₂	10	0.715	5.28	0.007434
$Zn_4B_6O_{13}$ Zn_2SiO_2	10	0.69	5.86	0.000550
Li ₂ WO ₄ +4% CuBi ₂ O ₄	15	0.485	5.39	0.001592
LiBO ₂ +4%AlF ₃ -CaB ₄ O ₇	15	0.55	4.50	0.003512

Measurement uncertainty due to sample thickness variation

	Minimum			Maximum			
Sample	thickness [mm]	Dk	Df	thickness [mm]	Dk	Df	Uncertainty of Dk ± [%]
CuB ₂ O ₄ _LiBO ₂	0.65	5.70	0.007557	0.78	4.93	0.007318	7.94
$Zn_4B_6O_{13}Zn_2SiO_2$	0.65	6.16	0.000555	0.73	5.60	0.000545	4.98
Li ₂ WO ₄ +4% CuBi ₂ O ₄	0.47	5.53	0.001600	0.5	5.26	0.001583	2.57
LiBO ₂ +4%AlF ₃ -CaB ₄ O ₇	0.53	4.63	0.003539	0.57	4.38	0.003486	2.93

Summary

☐ Resonant-based method for complex permittivity measurement of laminar dielectrics has been discussed ☐ Test materials of LTCC and ULTCC have been fabricated and measured ☐ Materials composition have been chosen to achieve low complex permittivity, making the materials promising candidates for 5G substrates ☐ SPDR measurement results confirm expectations for complex permittivity ☐ Test samples thickness needs to be rigorously controlled to measurement uncertainty low

NEMO 2022 12

Acknowledgement

Part of this work was funded by the Polish National Centre for Research and Development under M-ERA.NET2/2020/1/2021 contract.

Ultra-Low Temperature Co-fired Ceramics for 6th Generation Electronic Packaging

International Consortium:

Thank you for attention!

Questions?

molszewska@qwed.eu

NEMO 2022 14