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Outline

e Coplanar waveguide structure

o Introducing the basics
o Which EM parameters meaningfully describe thin film interaction
with GHz waves?
. modelling with the Finite Difference Time Domain FDTD method
o How does one efficiently model a layer of ultra-small thickness in
general purpose electromagnetic EM simulators?
e Application of the model to development of a 10 GHz dielectric
resonator DR scanner for graphene anodes.
e Conclusions 2
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Complex dielectric function

dB

V-D=p, Vv-B=0, VxE=—rH VxH=J+—

it

~L X(t) = X (w)- &

Vv-D=p, V-B=10, ‘-E’x.E‘-':—jmJE'h ?xﬁ:j+jmf1

— — —— —

ngoé}'E, Bzuoflr-H

)LE,J:D‘. FI:

g =g — e Complex permittivity

al)
ot

Constitutive equations in EM

-1
JW Lo [y

Coplanar waveguide structure CPW

Maxwell's equations

£ E AN

i u} i

N rm m H)

_______
.........

TSI
- > Dlstrlbutlons of electric
and magnetic fields
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PR - T T R S . SRR P

e Parallel Plate
e Coaxial Probe }
e Transmission Line
e Free Space S e

e Resonators Single Post Dielectric &

Resonator

The most common methods for measuring the complex .
dielectric (and possibly magnetic) function. [6][8] U
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Description of quasi-TEM waveguides

Distribution of transverse components
of electric E and magnetic H fields

Ei(z,y,z)=(c"-e " +c -e7%) - &

Hi(z,y,z)=(c"-e ¥ —¢ -e7%) - hy

complex propagation -~ = + j/-
constant

{a) coplanar even (b] odd coplanar

. i - -
i i 5
- [ R = y
e S o I

{c} microstrip (parasitic) type

Coplanar waveguide structure CPW

plane wave in air

waveguicde mode 2

Iane wave in

waveguide mode 1

7

medium with & off1

fyy i

First insight template generation
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0.1 GHz 1 GHz

Description of quasi-TEM waveguides

iIntegration contour . :

g X 107 x 1.0‘5

I I X ‘ =T
I | | s o
2 =
A B 0.2
0 * 0 —
-60 40 -20 0 20 40 60 60 -40 -20 O . 20 40 60
S bStl’Et e contour position (zm) contour position (.:m)
0 107 0.1 GHz 0 %107 1 GHz
= - S 05
T o
- 2 -
B _ - 31: :'a A -
. 2 -3 2
v(z) =~ E¢(z)-dl 1(z)= Q He(z)-dl ; 5 s
A = -
r P 2,

5
60 40 -20 0 20 40 60
contour position (um)

2.5 '
60 -40 -20 O 20 40 60
contour position (:m)

B
-u,;}=-f &y - dl
A

v(z)=(c" e+ e )y

-ig=51€7zt-dl

i(2) = (c"- e = 7)ig

characteristic impedance [6]

Coplanar waveguide structure CPW

x10° 26 GHz

& = - X

(U] - UG /U,

i
B2

=3
60 -40 -20 0 20 40 60
contour position (u:m)

5 %107 26 GHz

arg U - arg uo (deg)
R (=

-
=]

15—
-60 40 -20 0 20 40 &0
contour position (um)
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Scattering matrix
Port 1 Ss21 eV 5512 Port 2
O > O > O > &
5511 ¢ A 5522 Ss22 A S¢11
@ - - - O =] o
S512 e~ Ss21
o Vil o, VioZil Impedance step CPW segment of  Impedance step
L A/R@) T 2R
7.~ 7, length |/ Lo Ly

P, = R(ViI}) = |ail? - |bi?

Zi = ZH - ER(ZH)

Un

NI

a; = c; - bi=cj -
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Proposal for measuring thin films

s

waveguide, as a quasi-TEM
guide, is adequate to study
interaction of composites with
plane electromagnetic waves.

Significant advantages: °
e simplicity of the measurement
- it is enough to placed directly —

on the surface of the
. . <100 nm Substrate
conductive strips
e |ow sensitivity of the results to

geometric dimensions of the
sample With known and low permittivity £
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Which EM parameters meaningfully describe thin film
interaction with GHz waves?

METALLIZATION SHEET RESISTANCE/CONDUCTIVITY

— -1 — -1
R;s = (dooo ) (d o) Metallization Rs.pc (22/0) | Rs.rr (2/0) | ope (107 S/m) | o e (107 S/m)
parameters of dielectric 5 nm Cr + 10 nm Au 6.86 8.69 0.972 0.767
o nm Cr + 20 nm Au : : : .
the original surrogate i rronmA —— —— — !
g| & 5 nm Cr + 30 nm Au 1.44 1.73 1.98 1.65
meta 5 nim Cr + 50 nm Au 0.710 0.814 2.56 2.23
5 nm Cr + 70 nm Au 0.487 0.528 2.74 2.53
Scalling: 5 nm Cr + 100 nm Au 0.326 0.346 2.92 2.75
e Anisotropic
- 1500§a) < (b) (@) Resistance of the thin metallic strip
* Impedance—conservmg _ versus the aspect ratio (length divided by
= 1000 width); slope equals the sheet resistance.
g (b) Picture of one of the metallic structures
Specifically, sub-cellular modelsin 7 soo- runy used in the Transfer Length Method for
Z .

determining the metallization dc sheet
resistance for 5-nm Cr + 100-nm Au
metallization. [4]

conformal FDTD are recommended for 0.326 £/ + 0,002 Q0
. « . . il | 1 A L 1 K L
the modelling of minimally thin 0 1000 2000 3000 4000
. Aspect rali
surrogate sheets with acceptable pect e

computer effort.
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Anisotropic Comparisons of the original metal layers
f =30 GHz, R_ =30 Q/sq

1,0 s e s et 0,25 e e and their scaled surrogates:

- | o020 e Absorption is retained for surrogates thicker up
’ to d=0.02A, but nearly doubles when d=0.1A
0,15- o . . .
—0,6; . e Accuracy is improved by anisotropic scaling, but
) W .
= oal — 0,10; only for TM waves and thick surrogates
- | 0,05 (d=10mm, black mark in the figures above).
0.2 1 oo e Magnitudes as well as phases of reflection
Tu 1°I~'d1°°l‘ im 19m Lo 1°Pd1°°P im 10m e 1°“d1°°I~' im 10m (~180°) and transmission (~0°) are retained for
m m m .
(m) (m) (m) d<0.02A; at d=0.1A phase difference ca. 10°
Analytic, ¢« QW (10um), < QW (100 um), > QW (1 mm), + QW (10 mm) L . .
M TE (45 deg) TS de) between the polarisations is caused, which may
—TEM, —— eg.), — eg. . g
. . visibly modify field pattern above and below the
ANisotropic Impedance-conserving  surrogate
f =30 GHz, R, =30 Q/sq 06 e Impedance-conserving models allow a broader
180 St :gg i . R =100 Qsq, d =10 um range of scaling for low-resistance sheets as in
1 ] — s YT TV . . . .
2 165 | T 90 i odl aeronautics, but fail for high-resistance
L 150 S : -
> g ! susceptors:
S 135 s 1 S 0] — R_ =30 Q/sq, d, =10 um
- | S 45 -~
(g)120—_ (g) P wT 0.2}
= 105, | © 135 -
0+ : . . . Agol ol o Yo R, =14Q/sq,d, =10 um
14 10g 100p 1m 10m 14 10p 100p 1m 10m 0° : = = =
d (m) d (m) 10°° 10 10 10
Analytic, ¢ QW (10um), < QW (100 um), ©> QW (1 mm), + QW (10 mm) d (m)
— TEM, TE (45 deg.), TM (45 deg.) o-d = const —o-d, p-d, e/d = const
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CPW modelling with the FDTD method

Introduction

Yee's cell

E,
Yia 1' x:
0B, OE, OE. neld . . i i Ay H,| E,
8 at Oz a’y T; i‘.j+ .‘i:+ T 1j+ .‘i:+ i, t}j+%?k+l B u; i,j+%,k z; i,j+1?k+% B z; i,j,k+% MEeS Ing i - =
. . . -_— k
L OB OB BE discretization Az Ay F’/
y o z T . y
£ %~ 5 ofequations . - "l
n _
-D aBz BEI aEy T t+_; :J:-'E"' T3 i+%:-j3k z T"‘Q J+%3k < 1+2:j %?k s T+_; Jﬁk-l-% s T+_; Jﬁk_% ﬂ,—% e =
C = - = —_ — ) ) ri I = ] %
© ot dy  Or At Ay Az T3 i+ 5k SEiss
- L
('U aDI _ 8Hz 8Hy J o et flme 0 | e amewm 1 Rme ar
St oy 92 "
—
$ oD, oH, oH.
ot 0z or Y
oD. _oH, oH,
ot dr Ay _
i X
REEGalL,e8 2L 2E (N
A == =Nl simulation
E oo | st Move  Blown Eowe @ oo @ iosion 5 sy sz =
Ezem s 222 v B, ' o
' e e aeitel ey =
e e Fourler transform
1 1 1
t<1 + +
(Ar)?  (Ay)? (Az)?
B Rewats (1018l 18 from tagker) - [= 5
B Resin i Sl o7 madewn h'nw-' Bl mport | M addsoral |3
w45 2 RKEOG @ A EmME w ¥ M=k 1 1
= - — d determination of the
Tt ane wave in air -
S = L - wavegulde mode 2 M M M
-y e excitation field pattern
. : "€ [;t . plane wave In
b : 13’]3“3“ '~.\ mediumwith & 4
:n-w v o Ui ’ f f

— ] P 0000 ] 0003584 8] t1 ft?
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Modelling CPW in QuickWave Design in

QuickWave Modeller

Model with measuring probes

h,,=1mm

Wi
Air,er=1,0=0 PMC
boundary conditions
PMC for far fields 2
plane _
symmetry Mesh J:‘:E
A
<25 < t
| HM X <25 Um Dielectric
| E £, M,
> o Au, ¢, t'=50 nm | Assumptions:
] = e CPW length is equal to 4 mm, measuring probes length is equal to 2 mm
> as S R .__F:L e The width of the outer strip is equal to W,= 100 pm / 300 pm
> | /\| ~ E fro_l S}' ’ > e Cellsize:5um x5 pum x 100 pm /25 pm x 25 pm x 100 pm
VA NZ AN v Osi = 5.2 5/ " e Excitation field patterns were generated for f =10 GHz
_ = e excitation pulse with a rectangular frequency spectrum from 0 to 26 GHz, lasting
> _PEC 0.23 ns (about 23 000 iterations)
hpox = 0.2 Mm metallic surface e Analysis of half waveguide due to its symmetry

- I e PMC and PEC boundary conditions
- " e Gold and chromium coplanar strips were treated as one with averaged
) e conductivity = tay +ter

ZTE e The silicon substrate was assumed to be homogeneous and isotropic
e Maintains the condition o -t = o - '
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W, =300 um W, =100 xm W, =300 um
180, :

CPW with measuring probes |

=180
180

arg 511 (deg)

QuickWave [6]

opl—a L | ] = 120|
g i — § e

06" S - -

e ea, -
e > @ oa AR A o
Ii‘ﬂ:tw znzs:;nxgsum < [ [ _::‘_‘;\;::—.'__. B - w - % -Eu I
. : : J 0.2 | rasnsce———ae. | e ——— _
A el Design in QuickWave L | 120
é -180

Si, e = 1165, 0 - e - —_— VS S S .': SN S S S S
L 614 03 1 3 10 01 03 1 3 10 01 03 1 3 10 01 03 1 3 10
o Modeller f (GHz) f (GHz) f (GHz) f (GHz)
—10nm —20nm —30nm  50nm 70 nm 100 nm| |— measurement ---FD-TD

Vector Network Analyzer

|

Agilent N5242A PNA-X [4][7] T e U e T o

—10nm —20nm —30nm —50nm 70 nm —100 nm/ — measurement --FD-TD |
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Air,er=1,0=0 PMC
boundary conditions
I::::E \ for farfields/ N
Convergence tests s
' <25 pm x €25 pm
L . -§
IMesh:
Scaterring Matrix < e Au ot e=soom | |
£
-1 3
& Si, e = 11.65, 1
3D FD-TD @ 26 GHz 0,=0.15/m o
0.03242 -158.13 ¥ L&
= < - T\._PEC
0.032415 -E 158.14 hyo, = 0.2 MM metallic surface
= 0.03241 =
0 - -158.15
0.032405 @
L
0.0324 -158.16
0.72144 a7
o
B
W " -0
0.7214 2 37836
m
0.72138 : : : : 37.834 : : : :
4 6 ] 10 2 6 8 10
number of iterations x10° number of iterations o5
0.0326
3D FD-TD @ 26 GHz
0.0326 157 ¢ 0.0325
S ™
L ] o '15& i # [l [] L] L] - L] - 'If;- L
— 0.0325 o : 4 0.0324
ﬂ . s [ * - ml- -159
syt o 0.0323 -
L * o
0.0324 160
0.73 - - ' : : . . . 0.7216
. 386
E 8.4} ' 07215 |
0725 a o
v . ~_ 382" W 0.7214
ﬂ - - L ] [ ] n [ ] L] L] L] mﬂ 33 -
0.72 [ . i
E'.:=---- 0.7213
T8 [
0.7115 - - - - 37.6 — - - - - 0.7212
0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
ha"l:mm] - PEC -+ PMC halr (mm)

CPW modelling with the FDTD method

3D FD-TD @ 26 GHz
0038 145
0.036 . E -150 |
— =)
nu: 0.034 . - 155 | [
— & m -
0.032 .« = 180 .
ST
0.03 | .
40 |
0.75 | e, .
. g .
— . . 2 39+
& - = ¥
ﬂ I]'.T - (7] & .
. o 38 "
g i
ﬂ.“ i PR 3?‘ i H . PR
1 5 10 20 1 2 5 10
size of mesh element in coplanar slot (pm)
3D FD-TD @ 26 GHz
158 ¢
- ? | . | - - - - ™
o -158.2
Tt ] 1 .9 4584
o .
1]
-158.6
% — 37.84 :
[ ] m -
Q€ .
- E L
- b E 3‘? 33
. 0
2 .
® 3782 = T = L
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
hh“ {mm) hhnn {(mm)

20
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Convergence tests

0.034

0.032

0.03 |

IS, |

0.028 -

Scaterring Matrix

3D FD-TD i@ 26 GHz
156

"
=_
]
=

arg S, (deg)
z2 2

2

0.73 -

0.0325

= 0.03245 |

0.0324 |

0.7217

0.7216

1S,,|

0.7214

0.7213 "
0.

0.7215 |

10 20

&0 100 200 500 3 10 20 50

arg 5., (deg)
E 2 &

L]
L]

30
longitudinal size of the grid element {pm)

3D FD-TD @ 26 GHz
=158 *

-158.05 -

-158.1 ¥

arg 5,, (deg)

158,15 } T

37845

5
2

37835} Ferin

arg S,, (deg)

PR SRR i il 3?.5‘3
5 10 20 50 0.2
measuring probe length (mm)

s 1 2 5 10 20

50

0.032415 ¢

1S4,]

0.032405 +

0.72146 -

0.72144 -

—
=

o
072142 ¢

0.7214 -

0.72138

0.03241 ¢

CPW modelling with the FDTD method

3D FD-TD @ 26 GHz

0.05 ¢ 240
0.045 _
220
0.04 | : g
= ~ 200+ ** "7
0 0.035" o
u‘DS L " * L] - . E’ 13“ I
0.025 160
0.85 f 50 -
0.8 - ‘ﬁi
— 2 45
» 075! o
] - - [ 3 L ] - m 4“
n"? I T E ™ P " ] ™
0.65 35

0.05 01 02 0.5

1 2 5 10 20 0.05 01 02 05 1
thickness of alternate metallization (xm)

| * meshsize 5 um - narrowed meshes |

3D FD-TD @ 26 GHz
-158.14

-158.145

arg S,, (deg)

158,15+ °

37.838

37.8375

g
o 37.837
2
1]

37.8365

1 2 5 10

: 37.836 ' :
20 1 2 5 10
frequency of the excitation pattern (GHz)
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Convergence tests

48.061

48.06

2,1 (2)

48.059

48.058 |

-2.902

-2.903

arg Zn (deg)

E
&)
A AA A A A g
i

Characteristic parameters

3D FD-TD @ 26 GHz
7.0855 [

7.085

7.0845

T.084

6.6523

6.65225

=
-
“  B6.6522

6.65215

-2.904

4
number of iterations = 10°

6.6521

B 10 2 4 6

3D FD-TD @ 26 GHz

T,

arg Z, (deg)

8 10

number of iterations =10°

6.65[ » .

~ 6.64

6.63 |

0.5

.1

h

15
(mm)

L ] E‘BE L L
2 2.5 0.5 1

h

« PEC + PMC air

15
(mm)

2.5

1Z,1 (£2)

arg Z, (deg)

3D FD-TD @ 26 GHz
a9 , . o
4g | = ! =8/
S €
= a7/ ' @
=] =
I~ =
= dEﬂ I ™ (=
a5 | gh
_ 25 6.66 1
# [ ]
g e , 5.64.
o ._3_ - - E
N " <° 6.62
S 35 . 6.6
658 °
=il
1 2 10 20 1 2
size of mesh element in coplanar slot {um)
3D FD-TD @ 26 GHz
48.12 7.00
481 l T T .05 . o ..
" 7]
48.08 m .
. S 7.08 .
48.06 . 3
4804: ° 75y | | |
2.9 6.653 | .
2.901
20 ) £ 6.6525 {
2.902 " .
2.903 . I
2,904 ' : 6.6515 ' ' '
0 02 04 06 08 1 0 02 04 06
hhm[ (mm) hh“ (mm)

CPW modelling with the FDTD method

5

0.8

10

20
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Convergence tests wroab@i e
49 10 |
Characteristic parameters agls + v se s s oa s | .
— E " ¥ W -I 3 " B
3D FD-TD @ 26 GHz = 47 1 -
= =
48.5 7 76 N o : o 4
48.4
g da-la § ?1* ‘5 A i 2 - i i
Eﬁ 48.2 i 272 il 0.8
l.--E-." * I :" = - L] L] - L] L]
L] - - E-E [
48 7 g 2 .
2.8 M < B4 .
— Eg m “3 L ] - L ] L ] L] L ] -+ L | »
=il _2 5-5 [ = ™
@ a 6.2 - .
2 28 z 6.8 1 .
N - o | e m— et e el .. 20 BEHH 2l
g’ -2 .95 1 6.7 005 01 0.2 05 1 2 5 10 20 005 01 02 05 1 2 5 10 20
al’ 1 Liiiia o | thickness of alternate metallization (um)
| I i - PR S i . I E.E P i a i il i - . ~
5 10 20 50 100 200 500 5 10 20 50 100 200 500 mesh size 5 ym - narrowed meshes
longitudinal size of the grid element (um) 30 FD-TD @ 26 GHz
3D FD-TD @ 26 GHz 48.08 7.086
IE-I:IE T.m:ﬁ | L . " -
. 48.06 = . . )
I ~ £ 7085 i
E 48.07 __:.E_: o8 | 'E 4B D4 ﬁ )
— . - = i
N 48.06 - ‘ = N a0zl . 2 7.084 ;
48 | - ’
48.05 7.075 ; Lasd B
-2.9025 |
-2.9 6.6524 _ | 6.65226
E 2.90 [ . o |0 E . [ fLonaae )
2 2905 " 6.8522 i — | .
N 3 [ N 280 & 665222/
o . I iy " )
s 29 6.652 . E 6.6522 .
-2.9035 .
_2_91 5 ! P SRR | i H 5.5515 PR Sl S i | S i EEE:‘H il i i i b
02 05 1 20 50 0.2 05 1 2 5 10 1 2 5 10 20 1 2 10 20
measuring probe length (mm) frequency of the excitation pattern (GHz)
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CO nve rgence teStS parameter .ﬁ|511| ﬂﬂl‘g 511 A Sgﬂ .ﬁﬂt‘g’ 521
Compa rison number of iterations +0.000002 +0.003° +0.000003 +0.0003"
space size 1, -0.00002 -0.01° -0.00005 -0.04°
transverse mesh size 10° -0.04
size [1p0x 0.00003 +0.05° +0.0002 0.015°
longitudinal mesh size -0.0002 -2° -0.0007 -0.16°
measuring probe lenght Fluctuations increase with the length of the probe
thickness of alternate +0.0002 +0.2° +0.00003 +0.0007°
metallization
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How does one efficiently model a layer of ultra-small
thickness in general purpose EM simulators?
3D FD-TD @ 26 GHz
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Simulated parameters of CPW after [4] (case of W2=300 pm, Rs=0.326 [Q/[]], thickness 100 nm Au + 5nm Cr) at 26 GHz, with
uniform FDTD meshing of 5 um, as a function of scaled surrogate thickness - in pefect agreement with the measurements of

surrogate metallization thickness (pm)

surrogate metallization thickness (pm)

[4] for surrogate thicknesses below 2.5 pm and ca. 2% impedance error for thickness equal to the FDTD cell size.
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== Application of the model to development of a
10 GHz DR scanner for graphene anodes.
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== Application of the model to development of a
10 GHz DR scanner for graphene anodes.
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In this work, simulations of a benchmark CPW structure with ultra-thin metalization

Conclusions

made of gold thickness on a substrate of high-resistivity

Behind every

silicon for the frequency of 26 GHz

there is always a MODEL

parameter unambiguously determines the characteristic impedance, propagation

constant, and effective permittivity of transmission lines with (<110 nm) signal

and ground-plane layers.

extensive study has been conducted for the convergence and accuracy of FDTD models

of -based material test-fixtures. For the thin films, a lossy dielectric
preserving Rs = (d 0)' has been shown most efficient and valid up to the thickness of one
cell (with cell size dictated by the geometry and frequency range).

Attenuation coefficient is directly and inversely dependent on the metallization thickness

For more information about

come today to Amphi 400C at 17:35
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