

TUMA21

Dielectric and Cavity Resonators for Accurate Characterization of Liquids in the 1-50 GHz Frequency Range

Speaker: Marzena Olszewska-Placha QWED company (Booth #2537) (www.qwed.eu)

Why to characterise liquids/fluids?

- Dielectric characterisation of "loose" materials
 - liquids
 - powders
- Electronic coolants
 - cooling modern electronic systems
 - targeted at low Dk and Df
- Food industry
 - Microwave heating
 - Not only 2.5 GHz microwave heating at higher frequencies e.g. 5.8 GHz
- Raw materials producers e.g. ceramic powders

Characterisation with resonant methods

- Cavity devices
- Fabry-Perot Open Resonator

Measurements of liquids

Resonant methods are proven to be the most accurate among microwave material characterisation method

Measurements of liquids

Resonant methods covering 1 – 50 GHz frequency range

ube supplying

- TE₀₁₆ resonance mode (described with resonant frequency and Q-factor)
- Electric field mostly confined within the dielectric pill
- Circumferential electric field
 - \rightarrow no issues with galvanic connection of the lid
- Zero electric field at ρ=0

Connecting Minds. Exchanging Ideas.

 \rightarrow no risk of supressing resonance if lossy sample is inserted

Vector view * Obtained with QuickWave 3D software

Measurement methods (2)

Two/three stage measurement

Connecting Minds. Exchanging Ideas.

- Reference measurement cavity with empty container (f_{ref} and Q_{ref}) \rightarrow the inner diameter of the container needs to be precisely calibrated
- Measurement of sample-loaded cavity (f_s and Q_s)
- Scalar measurement of transmission curve (|S21|) is typically sufficient

Measurement methods (3)

Fabry-Perot Open resonator

100

Used for sheet dielectrics up to 130 GHz

New solution for liquids

Measurement methods (4)

Dielectric resonator

Specification

Fluid diameter: < 16 mm $TE_{01\delta}$: f = 2.45 GHz (Q = 29,400) $TE_{02\delta}$: f = 5.16 GHz (Q = 27,200)

Cavity resonator

Specification

Fluid diameter: < 3 mm TE₀₁₁: *f* = 23.8 GHz (Q = 14,200)

Specification Fluid thickness: 100-400 μm

Frequency: **15-50 GHz**

Fabry-Perot open resonator with a dedicated fluid container

Electronic coolants

Low-loss liquids typically exhibit dispersive properties at microwaves (Debye-like relaxation)

Uncertainty of Dk <1%

-9

Oils

SAN DIEGO2023

Engine oil

50

45 50

Temperature dependence (1)

Dielectric characterisation versus temperature

Cavity resonators and dielectric resonator cavities

PC with control app

VNA

Climatic chamber with cavity resonator @24GHz

Temperature dependence (2)

Dielectric characterisation versus temperature

coolant liquid and canola oil

Uncertainty of Dk due to variation of diameter of quartz tube @2.5 GHz - 0.1% @24GHz - 0.7%

Water

TE_{0mn} cylindrical modes provide superior accuracy in the characterisation of lossy liquids, like saline water.

at 2.5 GHz, 4 GHz, 7.86 GHz, 12.2 GHz, 16.9 GHz, 24.3 GHz

13

* J. Krupka, Measurements of the complex permittivity of highly concentrated aqueous NaCl solutions and ferrofluid employing microwave cylindrical cavities, Meas. Sci. Technol. 26 (2015).

Quartz Sand

Intrinsic properties of mixture components can be evaluated

(e.g. using Maxwell-Garnett model)

Effective parameters

Dk = 2.851	@ 1 GHz
Dk = 2.758	@ 2.5 GHz
Df = 3.367×10 ⁻³	@ 1 GHz
Df = 2.539×10 ⁻³	@ 2.5 GHz

Intrinsic parameters

Dk = 4.275	@ 1 GHz
Dk = 4.104	@ 2.5 GHz
Df = 4.117×10 ⁻³	@ 1 GHz
Df = 3.124×10 ⁻³	@ 2.5 GHz

Air volume fraction: 36.4%

Dielectric resonator (1.04 GHz)

Sand with saline water

Intrinsic properties of mixture components can be evaluated

 $T = 22 \ {}^{0}C$

Dielectric resonator (1.04 GHz)

Please visit us

Booth # 2537

Acknowledgement

The work has been conducted within ULTCC6G_EPac and I4BAGS projects under M-ERA.NET2 and M-ERA.NET3 programs.

17

🔅 🥨 M-ERA.NET Part of this work was funded by the Polish National Centre for Research and Development NCBR 🖤

under M-ERA.NET2/2020/1/2021 contract

Ultra-Low Temperature Co-fired Ceramics for 6th Generation Electronic Packaging

under M-ERA.NET3/2021/83/I4BAGS/2022 contract

Ion Implantation for Innovative Interface modifications in BAttery and Graphene-enabled Systems

With contribution from:

and Development

Prof. Bartlomiej Salski, Warsaw University of Technology

Piotr Czekala, Warsaw University of Technology

