MMAMA
Microwave Microscopy for Advanced and Efficient Materials Analysis and Production

General description
The MMAMA project aims to enable advanced material analysis and boost its quality and production efficiency thanks to the GHz measurement and modelling platform in a wide community.

MMAMA Objectives

Technological
- Improvement of SMM technology
- Nanoscale characterization platform for EU manufacturers of coatings, photovoltaic cells, and semi-conductor circuits

Economical
- Acceleration of the development of high efficiency cells
- Performances prediction at early stages

Sustainability
- Open innovation environment
- Standard Operating Procedures
- Electromagnetic 3D models

MMAMA Ambition
Beyond R&D and demonstration of SMM interest at production scale, MMAMA will notably allow standardization of practices and:
- allow off-line & lab characterization to generate data and application Database
- monitor and compare in-line pilot with application Database to optimize material

Main Outputs
MMAMA project results will first be exploited through dissemination to a selected community in the field to improve the application database. It will be the basis of new business opportunities for European industries in photovoltaic and composites sector.

MMAMA Consortium

Countries involved: Austria, Belgium, France, Greece, Poland, Switzerland.
Duration: 01/11/2017 to 30/10/2020
Budget/EU Grant: 3,992,176.25€
MMAMA Value Chain

Technology development
- Université de Lille
- imec
- CEDRIT

Product development
- KEYSIGHT TECHNOLOGIES
- MateriaNova
- dracula technologies

Validation
- AQAMANT COMPOSITES

Demonstration

Modeling and open platform
- QWED
- ETH Zürich

Standardization
- METAS National Office of Metrology

Dissemination and exploitation

Current QWED activities

Adaptation of the dielectric resonator technology from laboratory environment to S2S inline industrial application.

2-dimensional scanner for measurement of electric properties of materials using an SPDR at 10 GHz. Automatic control of the measurement process with FieldFox Handheld Microwave Analyzer and with new small portable 10 GHz Microwave Q-Meter.

Improvement of SPDR scanning using signal processing methods.

The MMAMA project has received funding from the European Union’s Horizon 2020 Research and Innovation program under Grant Agreement N°761036.