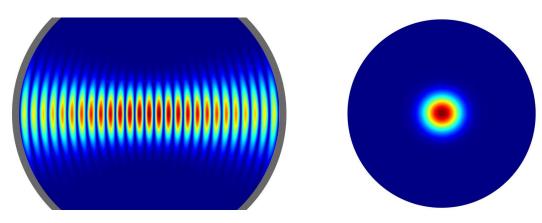


Fabry-Perot open resonator



EM material characterization

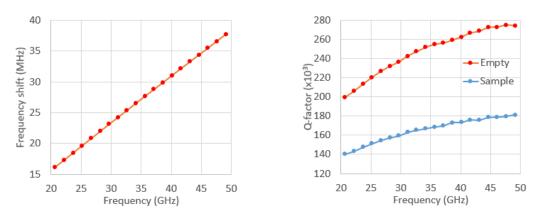
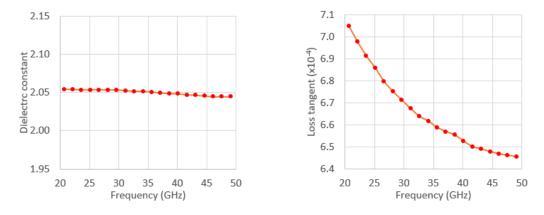
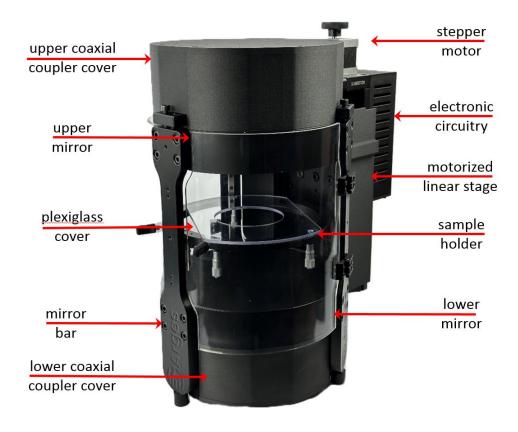

Table of Contents

Table of Contents	2
Fundamentals	3
Hardware	4
Software	5
Dielectric constant	6
Loss tangent	7
In-Plane Isotropic Materials	8
In-Plane Anisotropic Materials	9
Measurement Limits 1	0
Our Products & Services1	1
Major features1	2


Fundamentals

Odd $\text{TEM}_{0,0,q}$ **Gaussian modes**, where *q* is a longitudinal mode order, are exploited in the extraction of the complex permittivity of a dielectric sheet inserted exactly in the middle of the cavity.

By comparing measurement results with the EM model of the FPOR, resonance frequency shift is translated into the **dielectric constant**, and Q-factor's decrease into the **loss tangent** of a material under test.

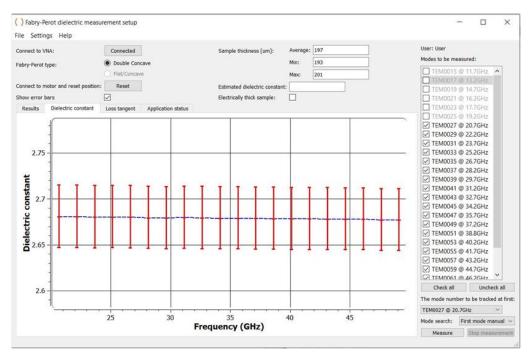

Hardware

Main features:

- Frequency coverage: **15 130 GHz** (optionally also 11-15 GHz)
- Spectral resolution: **1.5 GHz**
- Sample diameter: 75mm 150 mm (for low-loss samples: >90 mm)
- Mirrors: silver-plated and painted black
- Mirror's aperture diameter: 200 mm
- Polycarbonate sample holder: 3 mm
- Mirror separation: 200 mm
- Plexiglass chamber (reduction of **air flow** that may deteriorate the loss tangent extraction of low-loss samples)

Options:

• iris diaphragm (recommended above 60 GHz for spurious modes suppression)


Software

Main features:

- VNA communication (either in a single-sweep mode or with frequency extenders) via LAN, USB or USB-GPIB interface
- Automatic Gaussian mode identification and tracking
- Assessment of the dielectric constant uncertainty due to thickness variation
- Assessment of the loss tangent uncertainty due to **Q-factor variation**
- Full data storage
- Results recalculation for the modified thickness

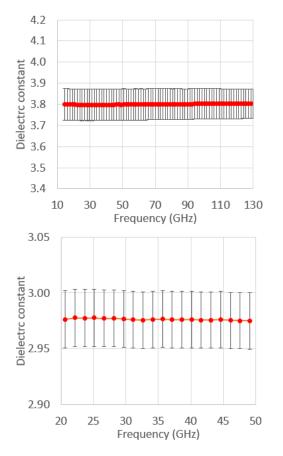
Additional features:

- Manual mode tracking (full control over the measurement)
- Mode tracking only at the first mode (substantial measurement **speed-up**)
- Adaptive averaging (for the loss tangent uncertainty reduction)

Measurement time:

- Mode tracking at the first mode only: >2 minutes for 20-50 GHz bandwidth
- Full mode tracking: 10 minutes for 20-50 GHz bandwidth

Dielectric constant


Accuracy and Uncertainty

Accuracy of the dielectric constant results mainly from the EM model of the FPOR, which is exploited to generate a look-up table of the resonance frequency as a function of the thickness and dielectric constant. It is estimated to be **less than 0.5%** provided that other limits described later do not apply.

The main reason for the **uncertainty** of the dielectric constant is thickness variation, δt . For electrically thin samples, it can be estimated as follows:

$$\delta Dk \cong -A\sqrt{Dk}\,\delta t \qquad \qquad A \cong 0.25 \dots 1$$

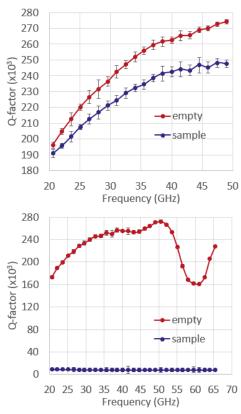
which indicates that it is crucial to keep a high quality of the sample.

Fused silica

Thickness: 132 ± 3.5 μm (± 2.6%) Average Dk: 3.8 ± 0.07 (± 1.8%)

PET GAG foil

Thickness: 157 ± 2 μm (1.3%) Average Dk: 2.976 ± 0.025 (0.84%)


Uncertainty bars on the dielectric constant plots are computed rigorously for min/max thicknesses (or $\pm 3\sigma$) provided in the software.

Loss tangent

Accuracy and Uncertainty

Loss tangent inaccuracy mainly results from of the accuracy of the electric energy filling factor estimation with the aid of the frequency incremental rule and it is **less than 0.5%**.

Loss tangent **uncertainty** (LTU), δDf , is usually much larger than the aforementioned inaccuracy and it results from the uncertainty of the Q-factor, which is estimated in the software with a circle-fitting algorithm.

For low-loss samples:

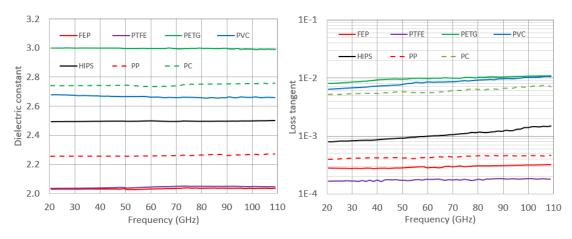
$$\delta Df \cong 2 \frac{\sigma_0 + \sigma_t}{Q_0 - Q_t} \quad for \quad Q_t \cong Q_0$$

where Q_t (Q_0) is the Q-factor with (without) the sample and σ_0 (σ_t) is the corresponding uncertainty.

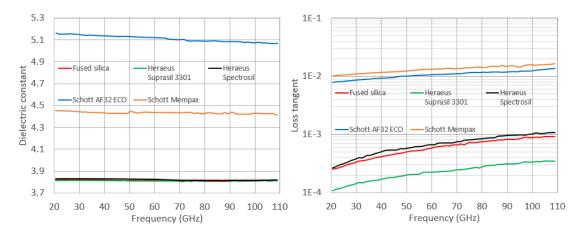
Since resonance curves with and without the sample are similar in shape for low-loss samples, both Q-factor uncertainties are **equally important** as compared to the Q-factor change, $Q_0 - Q_t$.

For high-loss samples:

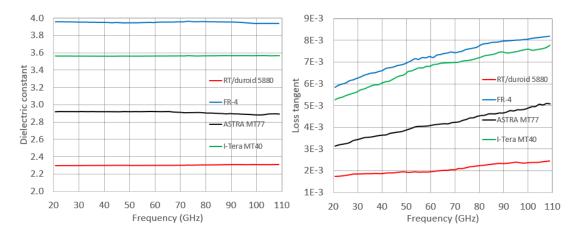
$$\delta Df \cong 2 \frac{\sigma_t}{Q_t} \quad for \quad Q_t \ll Q_0$$


In such case, the quality of the resonance curve with the sample plays a **dominant role**, whereas the one corresponding to the empty resonator is of minor importance.

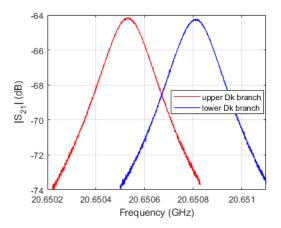
Q-factor uncertainty can be controlled by adjusting **VNA settings**, such as IF bandwidth, averaging factor, and power level, as well as reduction of mechanical **vibrations**, **air flow**, and maintaining temperature/humidity stable. Moreover, the **coupling level** can be increased (decreased) via the coaxial couplers when the sample is thick or lossy (thin or low-loss).

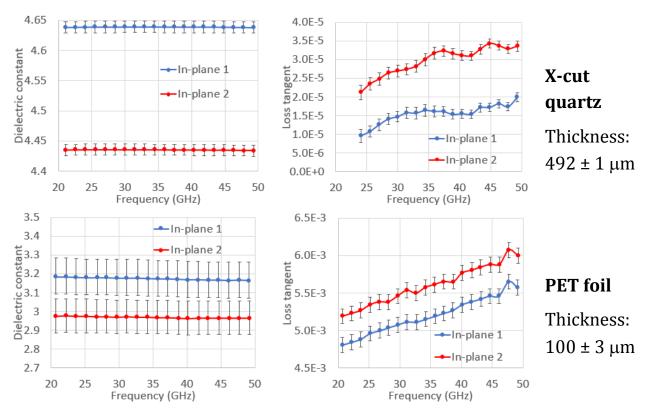

For given VNA settings, the lowest LTU can be typically achieved when $Q_t \cong 0.4 \dots 0.5 Q_0$

In-Plane Isotropic Materials


FPOR is well-applicable to the measurement of in-plane isotropic materials, such as **polymers** ...

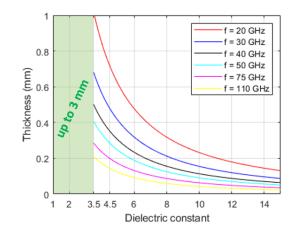
... various kind of **glasses** ...



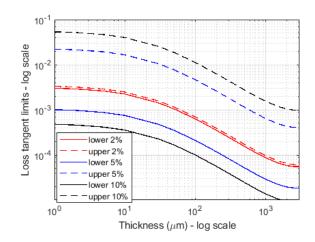


In-Plane Anisotropic Materials

Since Gaussian modes are **linearly polarized** in the FPOR, in-plane anisotropy of the sample can be measured. For that purpose, one needs to rotate the sample in the FPOR until only one mode (corresponding to aligning the electric field polarization with one of the two orthogonal anisotropy axes) is visible on a vector network analyzer (VNA). Consequently, measurement has to be performed **twice**.



It is essential to note that besides crystals, polymers, such as PET foil or high-impact polystyrene, can also exhibit in-plane anisotropy.



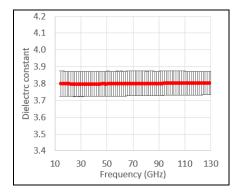
Measurement Limits

In a double-concave FPOR, odd TEM_{0,0,q} Gaussian modes can couple with higherorder **spurious modes**, in turn, disturbing the extraction of the dielectric constant. Consequently, the 0.5% accuracy is maintained only for the samples with **Dk < 3.5**. The plot below presents the resulting **thickness limits** computed at a few frequencies spanning from 20 GHz up to 110 GHz.

Due to Q-factor uncertainties mentioned on page 7, the **optimum thickness** of the sample that guarantees a given LTU can be estimated. The upper (lower) limit shown in the plot below has been computed assuming that $\sigma_0 = \sigma_t = 3000$ ($\sigma_0 = \sigma_t = 250$). For instance, the measurement of the sample that has Df = 10^{-2} (Df = 10^{-4}) with 5% precision requires the thickness to be lower (larger) than ca. $40 \ \mu m$ (250 μm). However, those limits can be alleviated if Q-factors are computed with lower uncertainty.

Our Products & Services

Fabry-Perot Open Resonator


Our flagship product dedicated to accurate and robust characterization of dielectric sheets in the 15-130 GHz frequency band in just a few minutes. It provides dielectric constant and loss tangent with the inaccuracy less than 0.5%.

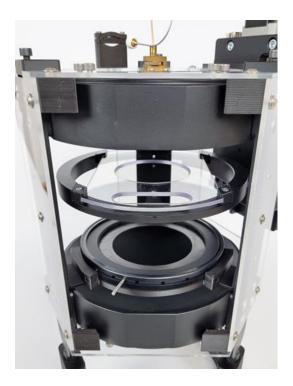
Fabry-Perot Open Resonator for Liquids

Our new product dedicated to automated broadband and accurate measurements of dielectric properties of low-loss liquids in 15 - 50 GHz frequency range. It provides dielectric constant and loss tangent with the inaccuracy less than 1%.

Material Characterization

Instead of acquiring own material characterization system, you can always commission our team to undertake the measurement of your samples at our laboratories equipped with necessary hardware operated by professional staff.

Major features


A double-concave Fabry-Perot open resonator is a tool dedicated to automated accurate characterization of dielectric sheets.

- Frequency range: 15-130 GHz (optionally also 11-15 GHz)
- **Dielectric constant:** Dk = 1 15 (accuracy: δDk < 0.5%)
- **Loss tangent:** Df > 10^{-5} (achievable accuracy: δ Df < 0.5%)
- **Thickness:** 1µm 3mm (for Dk < 3.5, otherwise thickness limits apply)
- **Diameter:** 75mm 150 mm (optimum: 80mm 100mm)
- In-plane **anisotropic** materials can be measured
- Measurement time: >2 minutes

Contact Us

Krzywickiego 12 lok. 1 02-078 Warsaw Poland

Email: <u>info@qwed.eu</u> Web: <u>www.qwed.eu</u>

