

Flexible Electromagnetic Modeling of SMM Setups with FE and FDTD Methods

Arif Gungor*¹, Malgorzata Celuch², Jasmin Smajic¹, Marzena Olszewska-Placha², Juerg Leuthold¹

*: email: arifg@ethz.ch

¹: Institute of Electromagnetic Fields (IEF), ETH Zurich

²: QWED Sp.z o.o

ETH zürich

Content

- Introduction
- Eigenvalue Analysis of Dielectric Resonator
 - FEM Analysis
 - FEM FDTD Comparison Analysis

- Transient Analysis of SMM Tip
 - TD-FEM Formulation
 - FDTD TDFEM Comparison
- Future Work
- Conclusion

Introduction

- What is SMM?
- Its use?
 - Micro- and nano- scale material characterization
- Different SMM Setups
 - Conductive fine tip
 - Dielectric resonator
- Why we need simulations of SMM Setups?

ETH zürich

Eigenvalue Analysis of Dielectric Resonator

- Dielectric resonator
 - Axial symmetry
 - Anisotropic material: Sapphire
 - Whispering gallery modes

E *H* zürich

Eigenvalue Analysis of Dielectric Resonator

Problem Definition

$$\Omega_{1}: \epsilon_{r\parallel} = 11.3532, \epsilon_{r\perp} = 9.2747, \mu_{r} = 1, \sigma = 0 \qquad (Sapphire)$$

$$\Omega_{2}: \epsilon_{r\parallel} = 1, \epsilon_{r\perp} = 1, \mu_{r} = 1, \sigma = 0 \qquad (Air)$$

$$\nabla \times \frac{1}{\mu} \nabla \times E - k_0^2 \varepsilon_r E = 0 \qquad \text{where } k_0^2 = \omega^2 \mu_0 \epsilon_0 \text{ in } \Omega_1 \cup \Omega_2 = \Omega \subseteq R^2$$
$$n \times E = 0 \qquad \text{over } \partial \Omega_{\text{PEC}} \subseteq R^1 \qquad (\text{PEC condition})$$
$$n \times \frac{1}{\mu} \nabla \times E = 0 \qquad \text{over } \partial_4 \Omega_1 \subseteq R^1 \qquad (\text{axial symmetry condition})$$

mth azimuthal order, $e^{-jm\phi}$ dependence

Eigenvalue Analysis of Dielectric Resonator

- Formulation
 - Angular dependence:

$$\mathbf{E} = E_{\tau} \mathbf{a}_{\tau} + E_{\phi} \mathbf{a}_{\phi} = \left[\mathbf{a}_{\tau} \sin(m\phi) \, \mathbf{e}_{\tau} + \mathbf{a}_{\phi} \frac{\cos m\phi}{r} \, \mathbf{e}_{\phi} \right]$$

• Using Galerkin's method of weighted residuals, the weak form:

$$\iint \left\{ \frac{1}{\mu_r} \left[r(\boldsymbol{\nabla}_{\boldsymbol{\tau}} \times \boldsymbol{e}_{\boldsymbol{\tau}}^c) \cdot (\boldsymbol{\nabla}_{\boldsymbol{\tau}} \times \boldsymbol{e}_{\boldsymbol{\tau}}) + \frac{m^2}{r} (\boldsymbol{e}_{\boldsymbol{\tau}}^c \cdot \boldsymbol{e}_{\boldsymbol{\tau}}) - \frac{m}{r} (\boldsymbol{e}_{\boldsymbol{\tau}}^c \cdot \boldsymbol{\nabla}_{\boldsymbol{\tau}} \boldsymbol{e}_{\phi} + \boldsymbol{\nabla}_{\boldsymbol{\tau}} \boldsymbol{e}_{\phi}^c \cdot \boldsymbol{e}_{\boldsymbol{\tau}}) + \frac{1}{r} \boldsymbol{\nabla}_{\boldsymbol{\tau}} \boldsymbol{e}_{\phi}^c \cdot \boldsymbol{\nabla}_{\boldsymbol{\tau}} \boldsymbol{e}_{\phi} \right\}$$

ETH zürich

Eigenvalue Analysis of Dielectric Resonator

- FDTD Analysis and used methods
 - The Bodies-of-Revolution formulation [1] has been adapted
 - Three-step procedure comprising:
 - resonant frequency extraction of a coarse model with Prony method post-processing
 - refined resonance extraction on a refined mesh with Fourier transform
 - sine excitation for eigenmode pattern generation
 - Presently, signal co-processing has been enhanced to accelerate the process to ca. 5 min per resonant frequency

[1]: M. Celuch and W. Gwarek, "Accurate analysis of whispering gallery modes in dielectric resonators with BoR FDTD Method", 22nd International Microwave and Radar Conference MIKON 2018, 15-17 May 2018, Poznan, Poland.

TH zürich

Eigenvalue Analysis of Dielectric Resonator

- Results
 - 2 MHz absolute error

Mode-m	f _{c1} [GHz] comp.[2]	f _{E1} [GHz] exp. [2]	f _{FE} [GHz] FEM	∆f [MHz] f _{FE} - f _{C1}	∆f [MHz] f _{FE} - f _{E1}	f _{FD} [GHz] FDTD	Δf [MHz] f _{FD} - f _{C1}	∆f [MHz] f _{FD} - f _{E1}
N4-8	8.51317	8.51281	8.51298	0.19	0.17	8.51286	0.31	0.05
N4-9	9.19134	9.19115	9.19116	0.18	0.01	9.19122	0.12	0.07
N4-10	9.86408	9.86402	9.86385	0.23	0.17	9.86410	0.02	80.0
N4-11	10.52960	10.53188	10.53155	1.95	0.33	10.53190	2.30	0.02
N4-13	11.85206	11.85500	11.85393	1.87	1.07	11.85438	2.32	0.62
S1-10	8.21869	8.21760	8.21936	0.67	1.76	8.21751	1.18	0.09
S1-11	8.80633	8.80550	8.80674	0.41	1.24	8.80526	1.07	0.26
S1-12	8.39613	9.39560	9.396330	0.20	0.73	9.39500	1.13	0.60
S1-13	9.98764	9.98720	9.98761	0.03	0.41	9.98642	1.22	0.78
S1-14	10.58031	10.58000	10.580154	0.156	0.154	10.57933	0.98	0.67
S1-15	11.17389	11.17380	11.173635	0.255	0.165	11.17305	0.84	0.64

E-field profile (just above mid-plane) for two chosen modes: N4-10 (left) and S1-13 (right)

The modes are named after [2] to account for symmetry and angular dependence of the mode shape

[2]: Krupka, Jerzy, et al. "Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials." IEEE Transactions on Microwave Theory and Techniques 47.6 (1999): 752-759. Institute of Electromagnetic Fields (IEF)

Transient Analysis of Conductive SMM Tip

- Conductive SMM Tip
 - Axial symmetry
 - Large aspect ratio (very fine tip and gap)
 - Applicable to advanced materials and device geometries

Transient Analysis of Conductive SMM Tip

TD-FEM Analysis

$$\nabla \times \frac{1}{\mu} \nabla \times \boldsymbol{E} + \mu_0 \sigma \frac{\partial \boldsymbol{E}}{\partial t} + \mu_0 \varepsilon_0 \boldsymbol{\varepsilon}_r \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0 \qquad \text{in } \Omega_{\rm s} \cup \Omega_a \subseteq R^2$$

 $\boldsymbol{n} \times \boldsymbol{E} = 0 \qquad \text{over } \partial_{PEC} \Omega \subseteq R^1 \qquad (PEC \text{ condition})$

 $\boldsymbol{n} \times \frac{1}{\mu} \boldsymbol{\nabla} \times \boldsymbol{E} = 0$ over $\partial_N \Omega \subseteq R^1$ (Axial symmetry condition)

$$\boldsymbol{n} \times \left(\frac{1}{\mu} \boldsymbol{\nabla} \times \boldsymbol{E}\right) + \frac{\mu_0}{Z_{Port}} \boldsymbol{n} \times \left(\boldsymbol{n} \times \frac{\partial \boldsymbol{E}}{\partial t}\right) = \frac{-2\mu_0}{Z_{Port}} \boldsymbol{n} \times \left(\boldsymbol{n} \times \frac{\partial \boldsymbol{E}_0}{\partial t}\right)$$

over $\partial_{Port} \Omega \subseteq R^1$ (Port Condition)

Transient Analysis of Conductive SMM Tip

- FEM Discretization
 - Using Galerkin's method of weighted residuals, the weak form:

$$\iint \left\{ r \left(\frac{1}{\mu} \nabla \times E \right) \cdot \left(\nabla \times E^{c} \right) + \mu_{0} \sigma r E^{c} \cdot \frac{\partial E}{\partial t} + \mu_{0} \varepsilon_{0} \varepsilon r E^{c} \cdot \frac{\partial^{2} E}{\partial t^{2}} \right\} dS + \frac{\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times \frac{\partial E}{\partial t} \right) dl = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) \cdot \left(\mathbf{n} \times E^{c} \right) dt = \frac{-2\mu_{0}}{Z_{Port}} \int r(\mathbf{n} \times E^{c}) dt = \frac$$

Transient Analysis of Conductive SMM Tip

- FDTD Method and Analysis
 - TEM pulse excitation over 5-15 GHz band launched from the upper port
 - The excitation corresponds to a coax line
 - Fine space discretization near the fine tip and the air
 - FDTD analysis with a standard GPU code does not converge and the reflection coefficient results are corrupted with a numerical noise
 - A double-precision version of the FDTD code is implemented and executed on CPU
 - Simulations converge after several excitation periods
 - After a few seconds simulation on an average laptop computer
 - The required memory is within 1 MB

E *H* zürich

Transient Analysis of Conductive SMM Tip

21.10.2019

13

Institute of Electromagnetic Fields (IEF)

ETH zürich

Future Work

Conclusion

- Capabilities of FEM and FDTD solvers have been demonstrated for SMM setups based on
 - Dielectric resonator
 - Excellent agreement of resonant frequencies achieved by both the solvers
 - Frequency domain FEM is faster and more efficient
 - Metallic tip
 - Ability of simulating for very large aspect ratio geometry
 - Same behavior obtained for scattering parameters
 - Time domain FDTD is more effective than TD-FEM for transient problem
- Simulation of real life measurement conditions
- Applicable to advanced materials

Acknowledgement

The work presented has received funding from the *European Union's Horizon 2020* research and innovation programme (H2020-NMBP-07-2017) under grant agreement *MMAMA n°761036*. (website: <u>www.mmama.eu</u>)

Questions?

1 1 1