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Abstract—This paper presents FDTD and FEM modeling of two different types of structures representative of industrial scanning 

microwave microscopy (SMM) material measurements. The first structure is based on a dielectric resonator where the frequencies 

of whispering gallery modes have to be known with relative errors below 10-4. Herein, this accuracy has been demonstrated using a 

FEM code adapted to dielectric anisotropy with hybrid usage of vectoral and nodal elements and FDTD code run in a three-step 

procedure. The second SMM structure consists of a conductive fine tip with radius 25 nm at a certain height from the sample. The 

numerical modeling is based on time domain FE (TD-FEM) and FDTD and it extracts the scattering parameters from conductive or 

dielectric samples. The results are in qualitative agreement and further work on calibration to the port impedance of the experimental 

setup is currently continued.   
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time domain methods, FEM, FDTD 

 

I. INTRODUCTION 

Developments of new organic and inorganic materials are currently at the focus of industrial needs. The quality and 

performance of the final manufactured products depend strongly on their chemical/electrical/optical/mechanical properties at 

nanoscale as well as their arrangements at macroscale. While nanoscale measurements have become feasible [1]-[5], macroscale 

characterization as in [6]-[9] is needed to verify that the material properties are set correctly on the entire surface of e.g. a thin-

film solar cell. To bridge the gap between nano- and macro-scale measurements, and to interpret those measurements into 

industrially useful knowledge, numerical modeling techniques are needed that replicate the measurement process on a computer 

and visualize the otherwise invisible physical phenomena. 

This work forms a part of our research activities conducted in the framework of the European project MMAMA [10] 

concerned with scanning microwave microscopy (SMM) and its modeling. SMM is a family of material measurement techniques 

at microwave frequencies, from micro- to nanoscale. A representative setup for nanoscale are SMM tips [1]-[5], while popular 

macroscale setups include dielectric resonators [6]-[8]. The modelling of those setups has previously been reported. However, 

for the tip-to-sample interaction the focus has typically been on a specific problem, for which an overall understanding was 

required [5]. For dielectric resonators, tailor-made algorithms such as Rayleigh-Ritz coupled to radial mode-matching have been 

implemented [8] and it is often argued that general-purpose codes are incapable of proving a sufficient accuracy, as stringent as 

10-4.  

In this paper, we summarize our efforts to apply the popular FEM [11][12] and FDTD [13][14] methods to the analysis of 

SMM scenarios, with a view to setting up a computer platform flexible in terms of geometry and simulation parameters. Our first 

goal is to cross-validate the two methods and in Section II, we present the actions performed to achieve their excellent match for 

an eigenvalue problem concerning a dielectric resonator. In Section III, we extend the FEM and FDTD analysis to a deterministic 

problem based on an industrial definition of a tip-to-sample interaction, which has so far led to qualitative agreement. In 

Section IV, further steps planned to be completed by the time of the NEMO Conference are indicated.   

 

 

II. EIGENVALUE ANALYSIS OF DIELECTRIC RESONATOR 

For this analysis, a resonator composed of a flat sapphire ring with a supporting rod is chosen as in [8]. There are several 

advantages of selecting this benchmark, the first one is that its whispering gallery modes have frequencies starting from around 

10 GHz which is a useful operating point for SMM. And there are already semi-analytical and experimental results available 

for some chosen modes [8], which will enable us to have a comparative study. Lastly, the problem can be reduced to 2D using 

axisymmetry, and this significantly reduces computational effort required.  

The benchmark defined in Fig. 1 is solved with parameters 𝐷𝑐 = 80mm, 𝐿𝑐 = 50mm, 𝐷 = 49.9894mm, 𝐿 = 30.008mm, 

𝑑 = 15mm as in [8]. Sapphire has relative permittivity 𝜀⊥ = 9.2747  in r − 𝜙 planes while its relative permittivity is 𝜀∥ =
11.3532 in 𝑧 direction in the cylindrical coordinates.  
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Fig. 1. Visualization of the considered sapphire resonator in 3D (left) and in 2D using axial symmetry (right)  

Our first application of the FDTD method to this benchmark has been reported in [15]. The Bodies-of-Revolution 

formulation after [14] has been adapted into a three-step procedure comprising: resonant frequency extraction of a coarse model 

with Prony method postprocessing, refined resonance extraction on a refined mesh with Fourier transform, and sine excitation 

for eigenmode pattern generation. Presently, signal co-processing has been enhanced to accelerate the process to ca. 5 min per 

frequency, while the results matching those of [8] are maintained and given in Table I (last 3 columns). The modes are named 

after [8] to account for symmetry and angular dependence of the mode shape. 

TABLE I.   RESONANT FREQUENCIES OF SELECTED EIGENMODES CALCULATED WITH FEM AND FDTD, VERSUS COMPUTATION AND EXPERIMENT IN [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now an analogous axisymmetric formulation of FEM is derived, starting with the wave equation: 

𝛁 ×
1

𝜇
𝛁 × 𝑬 − 𝑘0

2𝜺𝒓𝑬 = 0          (1) 

For the mth azimuthal order, e−j𝑚𝜙 dependence for each field component in azimuthal direction in cylindrical coordinate 

system is assumed. The formulation follows the approach of [16] and the anisotropic characteristics of the sapphire are taken 

into account by decomposing electric field into its in-plane (𝑬𝝉 = 𝐸𝜏𝒂𝝉 = 𝐸𝑟𝒂𝒓 + 𝐸𝑧𝒂𝒛) and azimuthal (𝐸𝜙𝒂𝝓) components: 

𝑬 = 𝐸𝜏𝒂𝝉 + 𝐸𝜙𝒂𝝓 = [𝒂𝝉 sin(𝑚𝜙) 𝑒𝜏 + 𝒂𝝓
cos 𝑚𝜙

𝑟
𝑒𝜙]    (2) 

 

Using Galerkin’s formulation [12] the weak form of (1) can be obtained as in (3), where 𝛁𝛕 = 𝒂𝒓
𝜕

𝜕𝑟
+ 𝒂𝒛

𝜕

𝜕𝑧
, and the 

superscript “c” denotes the trial function for the corresponding unknown: 

∬ {
1

𝜇𝑟
[𝑟(𝜵𝝉 × 𝒆𝝉

𝒄) ∙ (𝜵𝝉 × 𝒆𝝉) +
𝑚2

𝑟
(𝒆𝝉

𝒄 ∙ 𝒆𝝉) −
𝑚

𝑟
(𝒆𝝉

𝒄 ∙ 𝜵𝝉𝑒𝜙 + 𝜵𝝉𝑒𝜙
𝑐 ∙ 𝒆𝝉) +

1

𝑟
𝜵𝝉𝑒𝜙

𝑐 ∙ 𝜵𝝉𝑒𝜙] − 𝑘0
2𝜺𝒓 (𝑟𝒆𝝉

𝒄 ∙ 𝒆𝝉 +
𝑒𝜙𝑒𝜙

𝑐

𝑟
)} 𝑑𝑟𝑑𝑧 = 0. 

         (3) 

In order to discretize by using finite elements, vectoral edge elements with linear shape functions are used for in-plane 

component 𝒆𝝉 to eliminate possible spurious solutions, and scalar nodal elements with linear shape functions for 𝑒𝜙. Then the 

matrix form of the eigenvalue equation is obtained as in (4), where {𝑒}  denotes the eigenvectors and 𝑘0
2  stands for the 

eigenvalues: 

[𝐴]{𝑒} = 𝑘0
2[𝐵]{𝑒} .        (4) 

Solving eigenvalue equation (4) leads the resonant frequency and the mode shape is obtained by back substitution of 

eigenvector into (2). Field profile obtained by FEM formulation of some chosen mode can be seen in Fig. 2.  For FEM solver, 

a mesh with approximately 80000 elements is used to obtain such accurate results, which has around 120000 edges and 40000 

nodes resulting degree of freedom around 160000. A C++ code is compiled as solver, and the complete computation time takes 

less than 2 minutes with i7 processor. This is several times faster than previously with FDTD, as expected for a deterministic 

high-Q problem.  

Mode -

m 

fC1 

[GHz] 

comp.[8]  

fE1  

[GHz]  

exp. [8] 

FFE  

[GHz] 

FEM 

Δf  

[MHz] 

|fFE -  fC1| 

Δf  

[MHz] 

|fFE-  fE1| 

fFD 

[GHz] 

FDTD 

Δf  

[MHz] 

|fFD -  fC1| 

Δf  

[MHz] 

|fFD -  fE1| 

N4- 8 8.51317  8.51281  8.51298 0.19 0.17 8.51286 0.31 0.05 

N4- 9 9.19134  9.19115  9.19116 0.18 0.01 9.19122 0.12 0.07 

N4-10 9.86408 9.86402 9.86385 0.23 0.17 9.86410 0.02 0.08 

N4-11 10.52960

  

10.53188  10.53155 1.95 0.33 10.53190 2.30 0.02 

N4-13 11.85206

  

11.85500  11.85393 1.87 1.07 11.85438 2.32 0.62 

S1-10 8.21869  8.21760  8.21936 0.67 1.76 8.21751 1.18 0.09 

S1-11 8.80633  8.80550  8.80674 0.41 1.24 8.80526 1.07 0.26 

S1-12 8.39613  9.39560  9.396330 0.20 0.73 9.39500 1.13 0.60 

S1-13 9.98764  9.98720  9.98761 0.03 0.41 9.98642 1.22 0.78 

S1-14 10.58031

  

10.58000  10.580154 0.156 0.154 10.57933 0.98 0.67 

S1-15 11.17389

  

11.17380  11.173635 0.255 0.165 11.17305 0.84 0.64 



The computed eigenfrequencies are included in Table I (columns 4-6) and demonstrate excellent agreement with the FDTD 

results and reference [8].  

 

 

 

Fig. 2. E-field profile (just above mid-plane) obtained with our axisymmetric FEM for two chosen modes: N4-10 (left) and S1-13 (right). 

 

III. TRANSIENT ANALYSIS OF SMM TIP 

The tip-to-sample SMM problem considered for this analysis is based on an industrial definition [10] and visualized in Fig. 

3. It has a straight conductive section above the sample of radius 𝑟1 = 0.5 mm, which is tapered into a sharp tip with radius of 

𝑟2 = 25 nm. The sample is kept at a certain distance of 𝑔 = 100 nm from the tip to account for near field microscopy. Two 

samples with different properties are considered: metal (gold with 𝜀𝑟 = 1, 𝜎 = 4 ∙ 107 S/m) and lossless dielectric (SiNx of 𝜀𝑟 =
8). Response around 10 GHz band is of interest. 

 

 

Fig. 3. Visualization of the considered conductive SMM tip in 3D (left), fine tip and the gap (middle) and in 2D using axial symmetry (right). 

 
A general-purpose axisymmetric FDTD code [17] is first applied with quasi-TEM pulse excitation over 8-12 GHz band 

launched from the upper port in Fig. 3. Space discretization near the fine tip and the air gap can be seen in Fig. 4 for both the 
solvers. The excitation corresponds to a coax line but is not calibrated to any specific impedance, as the conditions of the 
experiment in [10] have not been defined in detail. It is observed that FDTD analysis with a standard GPU code does not converge 
and the reflection coefficient results are corrupted with a numerical noise, after thousands of excitation periods. This is attributed 
to the very fine meshing at the SMM tip, needed to model the tip and the gap. Therefore, a double-precision version of the FDTD 
code is implemented and executed on CPU.  
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Fig. 4. Very fine discretization near tip for TD-FEM (left) and FDTD (right) solvers. 

Now the simulations converge after several excitation periods, after a few seconds simulation on an average laptop computer 
and z-component of the electric field profile can be seen as in Fig. 5. The required memory is within 1 MB. The effects of both 
samples are distinguished, as shown in Fig. 6. 
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Fig. 5. Amplitude of z-component of E-field profile obtained using TD-FEM (left) and FDTD (right), showing similar behavior with the same port excitation 

and metallic sample. 

To conduct transient FEM simulation, we implement a time-domain algorithm (TD-FEM) with vectoral edge elements and 
linear shape functions to solve time domain Maxwell’s equation for electric field. Then extracting scattering parameters from the 
port and analyzing Fourier transform of the applied signal would show the effects of different sample properties on reflected 
power. The following equation governs the transient Maxwell’s equation with E-field formulation: 

𝛁 ×
1

𝜇
𝛁 × 𝑬 + 𝜇0𝜎

𝜕𝑬

𝜕𝑡
+ 𝜇0𝜀0𝜺𝒓

𝜕2𝑬

𝜕𝑡2 = 0.      (5) 

The boundary condition on the top port is as follows: 

𝒏 × (
1

𝜇
𝛁 × 𝑬) +

𝜇0

𝑍𝑃𝑜𝑟𝑡
𝒏 × (𝒏 ×

𝜕𝑬

𝜕𝑡
) =

−2𝜇0

𝑍𝑃𝑜𝑟𝑡
𝒏 × (𝒏 ×

𝜕𝑬𝟎

𝜕𝑡
),      (6) 

where the bottom and right boundaries of the domain are taken as perfect electric conductor (PEC) (𝒏 × 𝑬 = 0) and the left 

boundary conditions at 𝑟 = 0 come from the axial symmetry (𝒏 ×
1

𝜇
𝛁 × 𝑬 = 0). In the formulation, 𝒏 denotes the normal vector 

to the respective boundary, 𝑍𝑃𝑜𝑟𝑡 is the wave impedance at the port and 𝑬𝟎 is the input excitation field from the port, which is in 
time domain a well-known Gaussian burst with center frequency of 10 GHz [11]. The weak form of the equation obtained is 



∬ { 𝑟 (
1

𝜇
𝛁 × 𝑬) ∙ (𝛁 × 𝑬𝒄) + 𝜇0𝜎𝑟𝑬𝒄 ∙

𝜕𝑬

𝜕𝑡
+ 𝜇0𝜀0𝜀𝑟𝑬𝒄 ∙

𝜕2𝑬

𝜕𝑡2} 𝑑𝑆 +
𝜇0

𝑍𝑃𝑜𝑟𝑡
∫ 𝑟(𝒏 × 𝑬𝒄) ∙ (𝒏 ×

𝜕𝑬

𝜕𝑡
) 𝑑𝑙 =

−2𝜇0

𝑍𝑃𝑜𝑟𝑡
∫ 𝑟(𝒏 × 𝑬𝒄) ∙

(𝒏 ×
𝜕𝑬𝟎

𝜕𝑡
) 𝑑𝑙,            (7) 

to be computed within the domain, where one-dimensional integrals are only over the port. Also 𝑬𝒄  denotes trial function for 
unknown𝑬. For the time discretization backward difference formula (BDF) is used as in (8) where subscripts denote the time 
step and (7) is solved for 𝑬𝒕 after substituting (8). 

𝜕𝑬

𝜕𝑡
≈

𝑬𝒕−𝑬𝒕−𝟏

Δ𝑡
       (8) 

 

For the structure defined in Fig. 3 the implemented FEM solver uses a mesh with around 85000 elements with very fine elements 

around the sharp tip, 127000 edges (degree of freedom) requiring memory of around 4 GB, including the memory needed to 

store all field values for later visualization. A corresponding C++ code is compiled. For the simulated example case, around 

1000 time steps with Δ𝑡 = 2ps are needed for the analysis to converge, which takes less than 10 minutes of computation time. 

Hence, contrary to the resonator example, now FEM is more computationally expensive than FDTD, both in terms of memory 

and simulation time.  

After solving time domain Maxwell’s equation electric field profile is obtained as in Fig. 5 and the port parameters are 

extracted to obtain the scattering parameters as in Fig. 6. Note however, that the exact conditions of the experiment [10] are not 

known at the time of collating these results, and hence neither FDTD nor FEM simulations are calibrated to the actual reference 

impedance. This is why the absolute values of the reflection coefficient calculated with FDTD and FEM are different. They are 

still consistent (with each other and with the experiment) in showing that metal sample causes lower reflections than the 

dielectric sample, and that reflections decrease with frequency, also field profiles obtained from both models are quite similar 

as in Fig. 5. Further work on calibration of the models is also under way. 

 
Fig. 6. Reflection from metalic and dielectric samples with tip-to-sample gap of 100 nm obtained with FDTD (right) and TD-FEM (left), without port 

calibration. 

IV. CONCLUSIONS 

In this work, FDTD and FEM methods have been applied to two scenarios representative of industrial SMM material 

measurements: a dielectric resonators and a tip-to-sample interface. Since the scenarios are axially symmetrical, 

computationally effective 2D bodies-of-revolution variants of both methods are applicable. For axisymmetric FDTD, the 

version available in [17] has been used as a starting point but adapted to the high accuracy requirements of the SMM. Namely, 

a three-step procedure after [15] has been followed (and here accelerated) for the resonator problem and a double-precision 

version has been implemented in order to resolve the effects of material samples on the tip. For FEM, two original algorithms 

have been developed, one utilizing angular mode expansion with material anisotropy in frequency domain and using hybrid 

elements for high accuracy. And the other being a transient time-domain solver where edge elements are used with local 

refinement at the sharp tip. 

For the eigenvalue problem, FEM and FDTD are in excellent agreement: and both produce frequencies of whispering 

gallery modes with accuracy of relative error within 10−4, which was previously considered feasible only with tailor-made 

quasi-analytical methods. For the transient problem, FEM and FDTD are able to simulate the structure and detect the minimal 

effects of the material samples on the reflection coefficient of the scenario. They are consistent with the measurements [10] in 

indicating the higher reflections caused by the dielectric as compared to the metal, and the decrease of reflections with 

frequency. However, further work is required on calibrating both simulations to the reference impedance of the experimental 

setup. As expected, FEM approach proves faster than FDTD for the high-Q resonator problem, while FDTD is more effective 

than TD-FEM for the transient problem. 



The advantage of adapting FEM and FDTD to SMM modeling is that they offer full flexibility to further simulate arbitrary 

geometries (of SMM tips or resonators), under real-life measurement conditions and to advanced materials. Currently, a drift-

diffusion FEM solver is under development, which will be coupled to the EM algorithms as reported herein, for multiphysics 

simulations of material measurements in semiconductor industry. 
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