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1. Application layout 

 

Fig. 1.1 Application layout 

1. Problem type – allows for a definition of a problem type. There are three options to choose from:  

- Laplace equation, 

- Poisson equation, 

- Poisson + Drift-Diffusion equation. 

2. Plot – allows one to select a variable to be displayed. There are different variables available for 

display depending on the Problem type:  

- Laplace equation (Electric potential (U), Electric fields (Ex, Ey)), 

- Poisson equation (Electric potential (U), Electric fields (Ex, Ey), total charge (q_tot), positive 

charge (q_p), negative charge (q_n)), 

- Poisson + Drift-Diffusion equation (Electric potential (U), Electric fields (Ex, Ey), total charge 

(q_tot), positive charge (q_p), negative charge (q_n)).  

3. c  – molar concentration of positive (p) and negative (n) ions. This option is not available for Laplace 

eq. Problem type (default value equal 0 is used) and for Poisson eq. Problem type only the amount of 

positive ions can be changed (default value of negative ions concentration equal 0 is used). 

4. Length – the distance between parallel electrodes (indicated by green color in Fig. 1.2) 



 

  
 

 

5. Permittivity  – allows  changing the value of electrolyte permittivity  

6. Boundary U – allows specifying the value of electric potential on the left (L) and right (R) electrode 

7. Refresh after – allows specifying the number of iterations after which the displayed plot will be 

refreshed  

8. Iteration no – shows the iteration number for which the results are currently shown in the graph 

9. Theory – this button opens a new window with a “Manual and Theory” file 

10. Run – this button starts the visualization of simulation results 

11. Stop – this button stops the visualization of simulation results 
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Fig. 1.2. System geometry 



 

  
 

2. Theory and Examples 

Computational electromagnetics (CEM) is a powerful tool used in electrical engineering as well as a very 

promising tool for use in other industries that require the simultaneous solution of Maxwell's equations 

with equations describing other physical processes.  

Nowadays, more and more attention is paid to the area of energy materials, such as batteries or 

photovoltaics. Electromagnetic testing of such materials is gaining popularity but requires that charge 

transport mechanisms be taken into account in order to properly interpret the testing results. For 

example, a physical model of the ion transport process in the electrolyte must be considered in Li-ion 

batteries, which are one of the most popular electrical energy storage devices in various applications. 

Coupled electrochemical models are therefore necessary in battery research. 

The presented application enables modeling of coupled electrochemical phenomena occurring at 

electrolyte/electrode interfaces. The application can be used to visualize three different models of 

increasing complexity. The problems are solved using coupled Laplace / Poisson and drift -diffusion 

equations, which create a basic model of ion transport process in the electrolyte, as in e.g. in popular 

Li-ion batteries.  

2.1. Physical model 

A region filled with an electrolyte and polarized by fixed-potential electrodes is considered. The 

following physical quantities are available for display:  

- electric potential (U) distribution,  

- E-field distribution, 

- charge distribution (total, positive and negative), 

all in time and space. 

2.2.1. Electrostatics 

The first part of the model, consisting of (1), (2) and (3), is used for obtaining the electrical potential 

distribution in our space. Using the definition of electric potential the electric field distribution in 

space is obtained: 

𝑬 = − 𝛻𝑈 (1) 

The electric charge density in space is checked using Gauss law: 

𝛻 ⋅ 𝑫 = 𝜌𝑔  (2) 

∮𝑫 ∙ 𝑑𝑺 = 𝑞𝑔
S

 (3) 

Finally, the electric potential is updated using Poisson’s equation (in the case when there is no initial 

charge in the system Laplace’s equation (4)` is used): 

∆𝑈 = −
𝜌𝑡

𝜖𝑟 𝜖0
 (4) 



 

  
 

∆𝑈 = 0 (4)` 

 

2.2.2. Drift-diffusion model 

In the second part of the model the process of flow of ions (positive and negative) is taken into account. 

The separate currents for positive (𝒋𝒑) and negative (𝒋𝒎) ions are calculated using drift-difussion 

equation. It combines the influence of existing electric field on the charges with difussion process (𝐷𝑐  – 

diffusion coefficient, 𝜇 – mobility):  

𝒋𝒑 = 𝑞𝑝𝜇𝑬 − 𝐷𝑐𝛻𝑞𝑝  (5) 

𝒋𝒎 = 𝑞𝑚𝜇𝑬+𝐷𝑐𝛻𝑞𝑚 (6) 

The resulting currents cause a change in the position of ions in the modeled space in time and using the 

continuity equation we obtain the distribution of ions for each moment in time. 

∮ 𝒋𝒑 ∙ 𝑑𝑺 = −
𝑑𝑞𝑝

𝑑𝑡S
 (7) 

∮ 𝒋𝒎 ∙ 𝑑𝑺 =
𝑑𝑞𝑚

𝑑𝑡S
 (8) 

2.2.3. Discretization 

The solutions are found using discretized forms of equations listed in two previous sections and some 

other modifications that are explained below. 

𝐸𝑥𝑖𝑗
= −

(𝑈𝑖+1,𝑗 − 𝑈𝑖𝑗)

∆𝑥𝑖𝑗
 (9) 

E𝑦𝑖𝑗
= −

(𝑈𝑖,𝑗+1 − 𝑈
𝑖𝑗

)

∆𝑦𝑖𝑗
 (10) 

Equation (1) in discretized form is (9) and (10), additionally a d quantity is introduced and given by:  

𝑑𝑥 = 𝐷𝑥 ∗ Δ𝑦𝑎𝑣𝑔 𝛥𝑧𝑎𝑣𝑔  (11) 

 𝑑𝑦 = 𝐷𝑦 ∗ 𝛥𝑥𝑎𝑣𝑔𝛥𝑧𝑎𝑣𝑔 (12) 

Where Δ𝑧𝑎𝑣𝑔 = 1 𝑎𝑛𝑑: 

Δ𝑥𝑎𝑣𝑔 =
Δ𝑥𝑖 + Δ𝑥𝑖−1

2
 (13) 

Δ𝑦𝑎𝑣𝑔 =
Δ𝑦𝑗 + Δ𝑦𝑗−1

2
 (14) 

The 𝑑𝑥  and 𝑑𝑦 values are used in discretized form of Gauss law: 

𝑞𝑔𝑖𝑗
= 𝑑𝑥𝑖𝑗

− 𝑑𝑥𝑖−1,𝑗
+ 𝑑𝑦𝑖𝑗

− 𝑑𝑦𝑖,𝑗−1
 (15) 



 

  
 

In section A, electric potential is updated using Poisson’s equation (4). However, in this case, a relaxation 

technique is used: 

𝑈𝑖𝑗 = 𝑈𝑖𝑗 − 𝑟 ∗ /𝜖0( 𝑞𝑔𝑖𝑗
−𝑞𝑖𝑗 ) (16) 

𝑟 ∗ is a relaxation coefficient expressed as: 

𝑟 ∗= 
𝑟

𝛥𝑧𝑎𝑣𝑔
 (17) 

and  (𝑞𝑔𝑖𝑗
−𝑞𝑖𝑗 ) is a difference between total charge obtained from Gauss law and total charge given as 

a initial condition. 

Drift-diffusion equations are discretized to form: 

𝑗𝑝𝑥𝑖𝑗
= 𝑞𝑝𝑥𝑎𝑣𝑔𝑖𝑗

𝜇∗𝐸𝑥 − 𝐷𝑐
∗

𝑞𝑝𝑖+1,𝑗
−𝑞𝑝𝑖𝑗

𝛥𝑥
 (18) 

𝑗𝑚𝑥𝑖𝑗
= 𝑞𝑚𝑥𝑎𝑣𝑔𝑖𝑗

𝜇∗𝐸𝑥 + 𝐷𝑐
∗

𝑞𝑚𝑖+1,𝑗
−𝑞𝑚𝑖𝑗

𝛥𝑥
 (19) 

where: 

𝑞𝑥𝑎𝑣𝑔𝑖𝑗
=

𝑞𝑖+1,𝑗+𝑞𝑖𝑗

2
 (20) 

and 𝜇∗, 𝐷𝑐
∗ are normalized 𝜇 and 𝐷𝑐  parameters: 

𝜇∗ =
𝜇

𝛥𝑥𝑎𝑣𝑔𝛥𝑥
 (21) 

𝐷𝑐
∗ = 

𝐷𝑐

𝛥𝑥𝑎𝑣𝑔
 (22) 

 

The discretized forms of continuity equations (7), (8) are presented below: 

𝑞𝑝𝑖𝑗
(𝑡) = 𝑞𝑝𝑖𝑗

(𝑡 − 1) − (𝑗𝑝𝑥𝑖,𝑗
− 𝑗𝑝𝑥𝑖−1,𝑗

)Δ𝑡 − (𝑗𝑝𝑦𝑖 ,𝑗
− 𝑗𝑝𝑦𝑖,𝑗−1

)Δ𝑡 (23) 

𝑞𝑚𝑖𝑗
(𝑡) = 𝑞𝑚𝑖𝑗

(𝑡 − 1) + (𝑗𝑚𝑥𝑖,𝑗
− 𝑗𝑚𝑥𝑖−1,𝑗

)Δ𝑡 + (𝑗𝑚𝑦𝑖 ,𝑗
− 𝑗𝑚𝑦𝑖 ,𝑗−1

)Δ𝑡 (24) 

The total charge is expressed as the difference between positive and negative charges:  

𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝑝 − 𝑞𝑚 (25) 

2.2. Examples 

There are three Problem Types available for simulation and in all three cases, a region with length 

specified in Length option is terminated by two planar electrodes with electric potential (U) specified 

in Boundary U option. Such settings as well as the applied material parameters are representative of 

the so-called half-cell setup for the testing of battery materials. 



 

  
 

2.2.1. Laplace equation. 

The first example concerns electrostatics in a region without charges. This corresponds to the 

computation of the Laplace equation and finding the electrostatic potential distribution. Check the 

checkbox with Laplace eq. in the Problem Type section and run the simulation with the default settings. 

After 70 iterations, you will see the same U distribution as in Fig. 2.1. 

 

Fig. 2.3 U distribution for Laplace eq. Problem Type 

2.2.2. Poisson equation. 

In the second problem, ions are uniformly distributed as the initial condition. The ions are assumed to 

be static, which has the physical sense of zero diffusivity and mobility. Due to the charges, instead of 

the Laplace equation, the Poisson equation is now computed to find the electrostatic potential 

distribution. If densities of negative and positive charges are equal, the net charge is zero and the 

solution is the same as for the Laplace equation. Any net charge will, however, cause a deformation of 

the linear U(x) solution by a parabolic component. In Poisson eq. Problem Type only positive charges are 

considered nonzero in the modeled space. For the increasing molar densities of positive charges, the 

parabolic component of the potential distribution becomes increasingly significant and a local maximum 

of the potential shifts towards the grounded (lower potential) electrode, as shown in Fig. 2.3., Fig. 2.4. 

and Fig. 2.5.  

The results obtained with our algorithm (based on the Finite-Difference Time-Domain (FDTD) method) 

were compared with the results obtained from the analytical solution. The comparison is shown in  

Fig. 2.2. 



 

  
 

 

Fig. 2.2. Electric potential (U) distribution in 3 nm space limited by electrodes of 0.1 V potential difference, filled with 

electrolyte of εr = 2.82 and static positive charges of molar concentration: (a) 1 mol/m3, (b) 10 mol/m3, and (c) 15 mol/m3. 

In order to obtain the same results as presented in Fig. 2.3., Fig. 2.4. and Fig. 2.5. check the checkbox 

with Poisson eq. in the Problem Type section and run the first simulation with Length changed to 2 nm. 

After 150 iterations, you will see the same U distribution as in Fig. 2.2.  

 

Fig. 2.3. U distribution for Poisson eq. Problem Type and c=1 mol/m3 

Next, stop the simulation, increase positive ions molar concentration (c) to 5 and run a new simulation. 

b) a) c) 



 

  
 

 

Fig. 2.4. U distribution for Poisson eq. Problem Type and c=5 mol/m3 

Then stop the simulation, increase positive ions molar concentration (c) to 15 and again run a new 

simulation. 

 

Fig. 2.6.. U distribution for Poisson eq. Problem Type and c=10 mol/m3 

2.2.3. Poisson + Drift-Diffusion equations. 

In the third problem, the Poisson equation is coupled with the drift -diffusion equations. The initial 

condition is imposed by uniformly distributed positive and negative ions, but now the ions have finite 

diffusivity (10-9 m2/s) and mobility (4.036*10-13). The evolution of the distribution of charges is found by 

the time-stepping of eqs. (23), (24); at each time step, a new potential distribution is obtained by 

relaxation (9)-(16) leading to new current distributions given by (18)(19).  

In this case, an analytical solution is not easily available, so for comparison, a FEM solution is obtained 

using commercial COMSOL software [1]. A perfect agreement between our FDTD solution and FEM 

solutions is demonstrated in Fig. 2.7. 



 

  
 

 

Fig. 2.7. Positive charge concentration distribution in space limited by electrodes of 0.1 V potential difference, filled with 

electrolyte of εr = 2.82, with initial uniform concentration of positive and negative ions of 1 mol/m3 and Dc=10 -9 m2/s. 

In order to obtain the same results as presented in Fig. 2.8. check the checkbox with Poisson + Drift-

Diffusion eq. in the Problem Type section, change variable in Plot to q_t (total charge) and change Length 

to 2 nm. Then run the simulation and after 200 iterations, you will see the same q_t distribution as in 

Fig. 2.8.  

 

 

Fig. 2.8. Total charge distribution for Poisson + Drift-Diffusion eq. Problem Type 

3. Version 1.0 limitations 

The values of spatial steps and time steps are fixed for all types of simulations and equal to 0.1 nm and 

10-13 s respectively. For this reason, for some values of parameters (e.g. c, Boundary U) the simulation 

will not converge. These application limitations will be alleviated in a future release. 

 



 

  
 

[1] COMSOL software: https://www.comsol.com/products  

 

https://www.comsol.com/products

