

Contactless device for 2D imaging and precise characterisation of electrical parameters of anode materials for battery cells

M. Olszewska-Placha¹, A. Masouras², A. Wieckowski¹, N. Chotza², M. Celuch¹

¹QWED Sp. z o.o., Warsaw, Poland

²PLEIONE Energy S.A., Ajia Paraskiewi, Greece

Overview

Motivation

□ 2D iSiPDR scanner for materials testing

Measurement results

3

Motivation

- Development of new materials for energy storage systems e.g. conducting composites
- New materials may significantly vary across its surface:
 - thin layer materials obtained through deposition
 - parameters' dependence on e.g. thickness non-uniformities or inhomogeneity of conductive inclusions dispersion.
- A need for monitoring parameters' variation over a material surface
 - important for battery anodes → electrical parameters directly influence efficiency of the battery cell,
 - quality testing for pre-manufacturing stage,
 - intermediate life-cycle testing → relating anode parameters to battery state of health (SOH),
 - investigating influence of solid electrolyte interphase (SEI) layer on overall anode quality,
 - post-usage testing for anode aging evaluation.
- Contactless device for 2D imaging of low resistivity and conductive materials

MIKON 2022

2D iSiPDR scanner for materials testing - basiles

- Single-Post Dielectric Resonator acknowledged material characterisation method
- □ sample between the single post dielectric and the ground plane
- weak E-field in sample plane (tangential Efield is zero at ground plane, increasing linearly towards sample plane)
- measurement of very lossy samples possible
- measurement sensitive to sample position
- measures resistivity or sheet resistance

Magnetic field distribution

2D iSiPDR scanner for materials testing - desig

- Inverted SiPDR configuration
- □ 10 GHz chosen to improve raw spatial resolution
- Design with rigorous EM modelling
- □ Full-wave QuickWave BOR software
- Economies in computer effort by 10³ or more
- □ Number of FDTD cells: 8 000
- □ RAM memory occupation: 1 MB
- Dedicated signal processing techniques applied
- Simulation time: 1 minute

2D iSiPDR scanner for materials testing

- □ iSiPDR mounted over Standa 2D motorized translation stage
- □ Metal reference plate serving as a sample holder
- □ Sample holder size: 170 mm x 170 mm
- □ Scanning area: 100 mm x 100 mm
- □ Scanning step: 0.5 5 mm
- Admissible SUT thickness: max 1 mm
- **D** 2D imaging a set of point-wise measurements
- \Box In each point: measurement of f_{res} and Q-factor
- \Box ρ or R_s extracted based on f_{res} and Q-factor of empty and sample-loaded device
- Extraction using LUTs

10GHz iSiPDR scanner

Measurement results - validation

- New 2D iSiPDR scanner validated for point-wise measurements.
- □ Validation against commercial 5 GHz SiPDR device.
- □ Two low-resistivity reference silicon samples (Siegert Wafers).
- □ Centre samples' area was investigated.
- □ Measurements with Keysight handheld FieldFox VNA.
- Good agreement between iSiPDR scanner and 5GHz SiPDR have been obtained.

Measurement setup with 5GHz SiPDR device

Device validation results

Resistivity [Ω cm]			
Sample 1	Sample 2		
0.003348	7.78		
0.003416	7.48		
	<i>Resistivit</i> <i>Sample 1</i> 0.003348 0.003416		

Measurement results – material under test

 \square 2D iSiPDR 10 GHz scanner applied to 2D imaging of R_s of anode material for lithium-ion battery cells.

□ Anode electrode made of polymer composite:

- reinforced with graphene nano-platelets (GNPs)
- GNPs: avr thickness= 15 nm, diameter \approx 5 µm, aspect ratio \approx 330
- mixture of 92 wt. % of active material, 3 wt. % of conductive inclusions, and 5 wt. % of aqueous-based binder

□ The substrate material:

- 160 µm thick glass
- lateral size: 24 x 50 mm.

Dried at a fixed temperature for about 2h.

Substrate glass material and sample under test

Measurement results - 2D imaging setup

- Measurement setup: 10GHz iSiPDR scanner, VNA/Q-Meter, laptop with Scanner Unit Control Application
- □ Fully automated measurement procedure
 - □ VNA/Q-Meter configuration, communication & control
 - □ Configuration and control of the motors and XYtranslation table
 - Built-in procedure for enhanced accuracy of Q-factor extraction
 - □ Material parameters extraction
 - Import/export options
 - Export of scan results to *.csv and industrial *.gwy formats

		Configure		? ×	Motor 1		
		2			From [mm]		Step [mm
VNA QM Q-Meter			VNA NOT Connected.		25.00	-	2.00
VNA VNA			Q-Fieter not connected.		Go to Start	26	\$
Connect					Position: 61		mm
IP: 192.168.0.1::inst0	::INSTR Connect	Disconnect			Motor 2		
					From [mm]		Step [mm
Parameters					25.00	\$	2.00
Start Frequency [GHz]	10.100000	Set			Go to Start	26	0
Stop Frequency [GHz]	10.300000	Set			Position: 55		mm
Points	500	Set			Start/Stop		
BW [kHz]	3.000000	Set			() START		
Denne Level (dDen)	5 000000						
Power Level [dbm]	-5.000000	Set		M	lues		
		Set All		'	1 Symbol Name	PTY sm	ooth
					2 A062_IS	21 1_1	
Commands		2			4 A062_15	21 1_2	amoour
Commands Set					6 A062_IS	21 1_2	smooth
R&S ZNA50	-	Edit			7 A062_IS	21 1_3	smooth
					9 A062_IS	21 1_4	smooth
Command		Set			11 - A062_ S	21 1_5	smooth
					12 A062_[5 13 A062_[5	21 1_6	smooth
					14 A062_IS	21 1_7	emooth
					16 A062_ S	21 1 8	amoour

Measurement setup with 10GHz iSiPDR device

Measurement results - 2D imaging results

- Scanning area: 50 mm x 75 mm (25 mm margin around SUT)
- □ Uniform scanning step: 2 mm
- 1014 measurement points
- \Box Avr thickness of the deposited graphene anode layer: 0.130 mm \pm 0.02 mm
- □ Non-uniformities in R_s map due to sample thickness variation
- \square R_s extracted for average thickness value
- \Box An absolute value of R_s can vary within uncertainty of $\pm\,15\%$
- Average R_s value of 19.3 Ω/sq. in exact agreement with a result of a point-wise measurement with 5GHz SiPDR device.

Measurement setup with 5GHz SiPDR device

Summary

- An automated scanner device for 2D imaging of low-resistivity and conductive materials has been proposed.
- The scanner is based on inverted single-post dielectric resonator.
- The iSiPDR design has been conducted with the aid of full-wave electromagnetic simulations.
- The iSiPDR probe has been incorporated into automated mechanical design for 2D surface mapping.
- The iSiPDR device has been successfully validated on two reference samples.
- The 2D scanner setup has been applied to 2D imaging of graphene anode material dedicated for lithium-ion battery cells.
- 2D material imaging with iSiPDR scanner delivers both qualitative and quantitative measures of electric properties of investigated SUT.
- The scanning results are straightforward for samples with high thickness uniformity.
- Thickness inhomogeneities need to be accounted in evaluation of uncertainty of parameters' extraction.

Acknowledgements

Thank you for attention!

Questions?

molszewska@qwed.eu