

5G/ High Frequency Materials Characterization Challenges and Opportunities

Benchmarking Resonator Based Low dK/dF Material Measurements

Authors:

Michael J. Hill – Intel Corporation Malgorzata Celuch - QWED

Agenda

- Motivation and Industry needs
- Gaps & Practical Challenges
- Brief overview of the iNEMI 5G/mmWave Materials Characterization Initiative
- Introduction to topics in this session

- Dielectric constant measurements are key enables for many different industries & technologies
- '5G' extends beyond wireless applications many forwardlooking wired applications need material data spanning DC to 100+GHz

Src: Urmi Ray, 5G/High Frequency Materials Characterization Challenges and Opportunities, EMA 2021, S13 IPC APEX EXPO 2021

- Traditional methods of microwave design rely on trimming & tuning
- Difficult to tolerate in today's environment
- Errors in characterization limit accuracy of modeling resulting in time consuming iterations

- Development of new materials requires the ability to evaluate the performance of those materials at use condition
- Errors can be very costly

Cost to switch: ~\$2 per CPU substrate

x 20M units = \$40M

New Ultra Low Loss Build Up Mateiral

- Development of new materials requires the ability to evaluate the performance of those materials at use condition
- Errors can be very costly

Cost to switch: ~\$2 per CPU substrate

x 20M units = \$40M

New Low Loss Build Up Mateiral

Errors in characterization can cost many \$10's of millions for a single program, or worse, induce unexpected product failures

®

Gaps & Practical Challenges

Few vendors providing mmWave Permittivity equipment >20 GHz.

- None are traceable vendor to vendor differences up to user
- Challenges for ISO and quality control
- Who to trust
- Reliance on small vendors can be problematic

Useful 5G materials typically very lower loss

• Eliminates many traditional techniques

Increasing frequency

- Severe limitations on sample thicknesses
- Non-uniform requirements between measurement systems
- Incompatible sample dimension requirements
- Higher sensitivity to operator techniques

IPC APEX EXPO 2021

iNEMI – International Electronics Manufacturing Initiative Project: 5G/mmWave Materials Characterization

- 5G solutions require ultra-low loss laminate materials and PCBs/substrates
- No consistent methodology for measuring dielectric properties at mmWave Frequencies
- Many different approaches in use, requiring different fixtures, sample requirements
- Consistency in results between approaches is unclear
- iNEMI Project team members cover wide range of industry, academia and equipment suppliers
- All have vested interest in mmWave materials characterization

AGC-Nelco	ITRI
AT&S	Keysight
Centro Ricerche FIAT-FCA	MacDermid
EMD Performance Materials (Ormet Circuits)	Mosaic Mici
Flex	NIST
Georgia Tech	Nokia
ShowaDenko Materials	Penn State
BIDEN Co Ltd	QWED
BM	Shengyi Te
ntel	Sheldahl
sola	Unimicron T
TEQ	Wistron
	Zestron

eysight lacDermid-Alpha losaic Microsystems IIST lokia enn State WED hengyi Technology Company heldahl Inimicron Technology Corp /istron

Project Goals

- Gather industry experts to understand needs and try to address these problems
- Encourage development of traceable material references by standards organizations
- Better linkage between equipment manufacturers and end users

Round Robin Overview – Task 3

Sample Material Requirements

- Stable, Low loss
- Low moisture absorption / temperature dependency
- Isotropic
- Good mechanical & handling properties

Current Selection

- Precision Teflon
- Cyclo Olefin Polymer

Future additions

- Rexolite
- Fused Silica

9 Laboratory Effort

Round Robin Overview – Task 3

10 Kits Created

- Sample sizes 35 mm x 45 mm, 90 mm x 90 mm
- 9 International labs participating

Techniques included

- Split Post Dielectric Resonator
- Split Cavity Resonator
- Fabry-Perot
- Balanced Circular Disk Resonator

Frequency Span : 10GHz – 100GHz

Expect results to come in over the next few quarters

BUILD ELECTRONICS BETTER

Upcoming Presentations

Task 1

Benchmark

- Current techniques
- Typical material samples
- Potential reference materials
- Common practices & issues

Report complete

Finding: importance of cavity resonator techniques

Malgorzata from QWED will share an overview of these important techniques Task 2

Benchmark

- Emerging techniques
- Possibilities beyond 100GHz

Report complete 🔰

Highlights: techniques for the future

Nate from NIST will present an overview of techniques on the horizon & potential paths to traceability

Commonalities

Higher frequencies Tighter dimensions Challenging sensitivities

Best practices for measurements

Say and Daisuke from Keysight will wrap up this session with recommendations for quality measurements

Resonator methods considered in iNEMI 5G project

Why we use resonant methods

How these resonant methods work

Presentation will be illustrated with full-wave electromagnetic modeling with QuickWave[™] software by

Why these different methods may produce different results

what is vendor-specific, what is method-specific, and what other criteria may come into play

Resonator methods – motivation and background (1)

Resonance in practice: given fixed strength of Signal(in), at resonance Signal (out) is strongest

Resonator methods – motivation and background (2)

Resonance in theory: non-zero electromagnetic fields exist in isolated structures (no excitation). Field properties are well-defined and linked to material properties. E.g. for cylindrical cavities:

Cylindrical resonator: TE011 mode

IPC APEX EXPO 2021

Cylindrical resonator: single-mode versus multi-mode operation

Resonators are multimode devices.

Hence formally, material measurement can be performed at many frequencies in the same resonator.

However, some modes provide highest accuracy of material characterization. Some are difficult to excite.

Software provided with the resonator in compatible only with modes pre-selected by the vendor.

Software provided with the resonator in compatible only with modes pre-selected by the vendor.

IPC APEX EXPO 2021

Among the popularly available resonators, BCDR and FPOR work as multi-modal.

Resonator methods – motivation and background (3)

٠

٠

٠

250

.

300

300

9.42

9.40

sapphire

TE010

T (K) J.Krupka et al., "Complex permittivity of some ultralow loss dielectric crystals..", Meas. Sci. Technol. 10 (1999).

SCR, SPDR, FPOR

out-of-plane component of Dk, Df

TM010

BCDR

Full characterisation of anisotropic materials (like crystals) requires both measurements. IPC APEX EXPO 2021

Split Cylinder Resonator (SCR) - basics

In-plane Electric field is applied to Sample

TE011 mode

Split cylinder resonator (SCR) Discrete frequency points from 10 GHz up to 80 GHz

- High measurement precision
- Can be sensitive to many user errors
- Typically interpolated to 5G mmWaves
- Typically in-plane component of permittivity
- Typical sample thicknesses around 100 um
- Support temperature sweep measurement
- IPC-TM-650 2.5.5.13
- https://www.keysight.com/us/en/assets/7018-06384/brochures/5992-3438.pdf

IPC APEX EXPO 2021

Split Cylinder Resonator (SCR) - operation

IPC APEX EXPO 2021

Split-Post Dielectric Resonator (SPDR) - basics

- resonant mode with EM fields mostly confined in and between those ceramic posts \rightarrow minimial losses in metal enclosure
- H-field is only vertical at the side wall of the enclosure \rightarrow circumferential currents
- \rightarrow no radiation through slot
- E-field tangential to SUT

→ air slots between SUT and posts have negligible effect

easy SUT insertion through slot, no dismatling ٠

Split-post dielectric	Discrete	High measurement pre
resonator (SPDR)	frequency	 Easy to use
	points from 1	 Insensitive to many use
	GHz up to 15	 Typically in-plane comp
	GHz	 Typically extrapolated t
		 Typical sample thickness
		 IEC 61189-2-721:2015
		https://www.gwed.com
		https://www.keysight.op/ https://www.keysight.op/

- cision
- er errors
- ponent of permittivity
- to 5G mmWaves
- sses less than 1 mm
- m.pl/resonators spdr.html
- com/us/en/assets/7018-01416/applicationnotes/5989-5384.pdf

Split-Post Dielectric Resonator (SPDR) – modelling results

IPC APEX EXPO 2021

Split-Post Dielectric Resonator (SPDR) – operation (1)

IPC APEX EXPO 2021

Split-Post Dielectric Resonator (SPDR) – operation (2)

For many practical materials, measuring only abs (S21) provides appropriate accuracy.

Keysight Option N1500A uses S21 (amplitude & phase) which helps enhance accuracy (*under study in iNEMI project*).

SPDR use in labs... ...and at home

Balanced-type circular disk resonator (BCDR) - basics

Balanced-type circular disk resonator (BCDR) - operation

Open the resonator

Set lower side sample

concentricity must be preserved

Set shim sheet

Set center electrode

Set upper side sample

Close the resonator

Clamp and measure

Resonant Freq. vs. Permittivity @ disc diameter 15mm

Balanced-type circular disk resonator (BCDR) – modelling

Balanced-type circular disk resonator (BCDR) – modelling

Fabry-Perot Open Resonator (FPOR) – basics..

- High measurement precision
 - Can be sensitive to many user errors
 - Uncertainty increases with increasing frequency
 - Typically in-plane component of permittivity
 - JIS R1660-2
 - https://www.qwed.com.pl/resonators.html#ResonatorFPOR
 - <u>https://www.keysight.com/main/editorial.jspx?cc=US&lc=eng&cke</u> y=2276755&nid=null&id=2276755

Fabry-Perot Open Resonator (FPOR) - operation

Fabry-Perot Open Resonator (FPOR) - operation

With appropriately designed feeding loops, FPOR is capable of linear E-field polarization and hence detecting in-plane anisotropy:

Resonances detected for **BoPET** sample (t = 0.100 mm), turned in xy plane.

BoPET (biaxially-oriented PET) involves thermal drawing in two in-plane directions with substantially different draw ratios, followed by crystallization. Hence, it is in-plane anisotropic.

For PETG (non-crystalline copolyesters, isotropic), resonant frequency does not depend on angular position of the sample.

Techniques selected for Task 3 if iNEMI 5G project (FPOR)

	Preferred t	Optional		
Technique	Split cylinder resonator (SCR)	Balanced-type circular disk resonator (BCDR)	Fabry-Perot open resonator (also called open cavity)	Split-post dielectric resonator (SPDR)
Sample dimensions	20 um ~ 300 um (best for 100 um), 34 mm x 45 mm > 20G	0.1 mm ~ 1 mm, Best for 0.2~0.5 mm, 50 mmΦ x 2 each	0.050 – 3 mm, min. diameter: 75 mm max diameter: 150 mm	max 0.6 mm, min. 15 mm x 15 mm max 40 mm x 40 mm @15G

Samples under test in Task 3:

35 mm x 45 mm 90 mm x 90 mm

thickness: 50, 125, 188 μm

Concluding remarks

In the on-going iNEMI project, the four resonator methods (SCR, SPDR, BCDR, FPOR) are studied in terms of accuracy, repeatability, and reproducibility.

Each method has specific features, which can make it preferable for a particular application (e.g., different sample Dk / Df, thickness, expected anisotropy; frequency & temperature range of use).

Attention:

Each resonator is just a passive test-fixture.

All resonators must be used with VNA (*in some cases, scalar analyser is sufficient*). Using the same resonator used with different network analysers (and signal processing software) may lead different results.

Acknowledgement

