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Abstract—The paper reports recent developments of Open 

Innovation Environments in a focus of the European Union 

research projects. It presents a new extension of the open access 

computational electromagnetics platform to the modeling of 

coupled electrochemical phenomena occurring at 

electrolyte/electrode interfaces. The problems are solved using 

coupled Laplace / Poisson and drift-diffusion equations, which 

create a basic model of ion transport process in the electrolyte, 

as in e.g. in popular Li-ion batteries. The developed coupled 

FDTD solver is validated against analytical solutions for the 

electrostatics and independent FEM solutions for the 

electrochemistry. It is prepared to be openly used for the 

modeling of industrially representative test-fixtures for battery 

materials, such as those defined in the H2020 NanoBat project. 

Keywords—open modelling platform, open innovation 

environment, computational electromagnetics, computational 

chemistry, applied electromagnetics, coupled processes 
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I. INTRODUCTION  

While computational electromagnetics (CEM) has 

become a well-established tool in electrical engineering, its 

expansion into other industries requires simultaneous 

solutions of the Maxwell equations with equations describing 

other physical processes. This became evident, for example, 

in the food industries of early 2000s, when the design of 

microwaveable food packages stimulated the extensions of 

CEM FDTD (finite-difference time-domain) codes with 

enthalpy-dependent material parameters, heat transfer [1], and 

load movement during the heating [2]. An intriguing range of 

applications for electromagnetics opens up these days in the 

area of energy materials, such as used in batteries or 

photovoltaics. Electromagnetic testing of such materials is 

gaining popularity [3][4] but requires that charge transport 

mechanisms be taken into account in order to properly 

interpret the testing results. For example, a physical model of 

the ion transport process in the electrolyte must be considered 

in Li-ion batteries, which are one of the most popular electrical 

energy storage devices in various applications [5]. Coupled 

electrochemical models are therefore necessary in battery 

research [6], which motivates our efforts to enhance our EM 

FDTD tools [7] with drift-diffusion models [8][9]  

Our recent work has been performed in the framework of 

the European Horizon 2020 projects [3][4], where a 

significant attention is given to Open Innovation. Open 

Modeling Platforms are expected to deliver the results of 

research for the usage by a wide scientific community as well 

as for the teaching. Accordingly, we have set up an Open 

Platform of Tools and Examples [10][11], based on reduced-

power versions of commercial CEM tools and supplemented 

with models and procedures dedicated to material testing 

applications. They are accessible via a license-free graphical 

user interface, which in turn is capable of invoking various 

other EM and multi-physical solvers under different licenses.  

Herein, we report an extension of EM FDTD to charge 

transport with the equations derived in Section II. 

Benchmarking examples are discussed in Section II and 

conclusions are drawn in Section IV. 

II. PHYSICAL MODEL 

We consider a region filled with an electrolyte and 

polarized by fixed-potential electrodes. In this work, we focus 

on a 2D case and our benchmarking examples are for a 

parallel-plate setup, but extensions to 3D are straightforward. 

The following physical quantities are analyzed:  

- electric potential distribution,  

- E-, D- field distribution, 

- charge distribution, 

- drift and diffusion currents, 

all in time and space. 

A. Electrostatics 

 The first instance  the electrostatic model, consisting of 
eqs. (1), (2) and (3), is used for obtaining the electrical 
potential (U) distribution in space. Using the definition of 
electric potential, the electric field (E) distribution in space is 
obtained: 

𝑬 = − 𝛻𝑈 (1) 

The electric charge density (ρ) in space is checked using the 
Gauss law: 

𝛻 ⋅ 𝑫 = ρ  (2) 

which we shall consider in the integral form, providing charge 
stored in each FDTD cell and assigned to a node at which 
potential U is defined: 

∮ 𝑫 ∙ 𝑑𝑺 = q
S

   (3) 

 

Finally, the electric potential is updated until the Poisson 

equation is satisfied: 

∆𝑈 = −
ρ

𝜖𝑟 𝜖0
         (4) 

 



B.  Drift-Diffusion model 

 In the second instance of the model, the process of the 

flow of ions (positive and negative) is taken into account. The 

separate currents for positive (𝒋𝒑) and negative (𝒋𝒏) ions are 

calculated using drift-difussion equations. They combine the 

influence of the existing electric field on the charges with the 

difussion process due to nonuniform charge distribution 

[8][9]:  

𝒋𝒑 = 𝑞𝑝𝜇𝑬 − 𝐷𝑐𝛻𝑞𝑝               (5) 

𝒋𝒏 = 𝑞𝑛𝜇𝑬+𝐷𝑐𝛻𝑞𝑛              (6) 

where 𝐷𝑐  – diffusion coefficient, 𝜇 – charge mobility. The 

resulting currents cause a change in the position of ions in the 

modeled space in time and using the continuity equation we 

obtain the distribution of ions for each moment in time. 

∮ 𝒋𝒑 ∙ 𝑑𝑺 = −
𝑑𝑞𝑝

𝑑𝑡S
       (7) 

∮ 𝒋𝒏 ∙ 𝑑𝑺 =
𝑑𝑞𝑛

𝑑𝑡S
       (8) 

 

C. Discretization 

The FDTD approach after [12] is used to solve eqs. (1)-

(8) in a coupled manner. Fig. 1 shows a fragment of the 

FDTD mesh. Different physical quantities are calculated at 

staggered positions, at the nodes marked in Fig. 1. This 

facilitates second order approximations in space and time to 

the differential operators as well as charge conservation over 

time, analogously as in the FDTD method for 

electromagnetics [12]. Using the notation of Fig. 1, the 

electric field components are obtained by the discretized 

eq. (1): 

 

𝐸𝑥𝑖𝑗
= −

(𝑈𝑖+1,𝑗−𝑈𝑖𝑗)

∆𝑥𝑖𝑗
         (9) 

E𝑦𝑖𝑗
= −

(𝑈𝑖,𝑗+1−𝑈
𝑖𝑗

)

∆𝑦𝑖𝑗
      (10) 

For convenience, fluxes of electric induction are also defined:  

𝑑𝑥 = 𝐷𝑥 ∗ Δ𝑦𝑎𝑣𝑔𝛥𝑧𝑎𝑣𝑔      (11) 

 𝑑𝑦 = 𝐷𝑦 ∗ 𝛥𝑥𝑎𝑣𝑔𝛥𝑧𝑎𝑣𝑔            (12) 

where Δ𝑧𝑎𝑣𝑔 = 1 is used with a view to future extension to 

3D problems and: 

Δ𝑥𝑎𝑣𝑔 =
Δ𝑥𝑖+Δ𝑥𝑖−1

2
      (13) 

Δ𝑦𝑎𝑣𝑔 =
Δ𝑦𝑗+Δ𝑦𝑗−1

2
      (14) 

The 𝑑𝑥 and 𝑑𝑦 values are used in the discretized form of the 

Gauss law to obtain a residual charge at each voltage node: 

𝑞𝑔𝑖𝑗
= 𝑑𝑥𝑖𝑗

− 𝑑𝑥𝑖−1,𝑗
+ 𝑑𝑦𝑖𝑗

− 𝑑𝑦𝑖,𝑗−1
     (15) 

In a space without charges, such as cross-sections of TEM 

transmission lines, any non-zero residual charge indicates 

that the physical solution for D- and E-fields, and hence for 

the potential U, has not been reached, and the potential 

distribution is updated by a relaxation procedure [7]. An 

analogous procedure is applied for the electrostatic problem 

with charges as in of Subsection A. Here, a relaxation 

technique is used to solve the Poisson equation (4): 

𝑈𝑖𝑗 = 𝑈𝑖𝑗 − 𝑟∗ /𝜖0( 𝑞𝑔𝑖𝑗
−𝑞𝑖𝑗)     (16) 

where r* is relaxation coefficient expressed as: 

𝑟∗= 
𝑟

𝛥𝑧𝑎𝑣𝑔
      (17) 

and  (𝑞𝑔𝑖𝑗
−𝑞𝑖𝑗) is the difference between the residual charge 

obtained from Gauss law and total charge given as the initial 

condition. 

For the case with moving charges, as in Subsection B, drift-

diffusion equations are discretized to obtain currents: 

𝑗𝑝𝑥𝑖𝑗
= 𝑞𝑝𝑥𝑎𝑣𝑔𝑖𝑗

𝜇∗𝐸𝑥 − 𝐷𝑐
∗

𝑞𝑝𝑖+1,𝑗
−𝑞𝑝𝑖𝑗

𝛥𝑥
      (18) 

𝑗𝑛𝑥𝑖𝑗
= 𝑞𝑛𝑥𝑎𝑣𝑔𝑖𝑗

𝜇∗𝐸𝑥 + 𝐷𝑐
∗

𝑞𝑛𝑖+1,𝑗
−𝑞𝑛𝑖𝑗

𝛥𝑥
     (19) 

where central averaging of the charges at the voltage nodes is 

used to approximate the charges at the current nodes: 

𝑞𝑥𝑎𝑣𝑔𝑖𝑗
=

𝑞𝑖+1,𝑗+𝑞𝑖𝑗

2
      (20) 

and 𝜇∗, 𝐷𝑐
∗ are normalized 𝜇 and 𝐷𝑐  parameters: 

𝜇∗ =
𝜇

𝛥𝑥𝑎𝑣𝑔𝛥𝑥
      (21) 

𝐷𝑐
∗ = 

𝐷𝑐

𝛥𝑥𝑎𝑣𝑔
      (22) 

The discretized forms of continuity equations (7), (8) as 

presented below are now applied to update the distribution of 

positive and negative charges: 

𝑞𝑝𝑖𝑗
(𝑡) = 𝑞𝑝𝑖𝑗

(𝑡 − 1) − (𝑗𝑝𝑥𝑖,𝑗
− 𝑗𝑝𝑥𝑖−1,𝑗

)Δ𝑡 − (𝑗𝑝𝑦𝑖,𝑗
−

𝑗𝑝𝑦𝑖,𝑗−1
)Δ𝑡         (23) 

𝑞𝑛𝑖𝑗
(𝑡) = 𝑞𝑛𝑖𝑗

(𝑡 − 1) + (𝑗𝑛𝑥𝑖,𝑗
− 𝑗𝑛𝑥𝑖−1,𝑗

) Δ𝑡 + (𝑗𝑛𝑦𝑖,𝑗
−

𝑗𝑛𝑦𝑖,𝑗−1
)Δ𝑡         (24) 

Finally, the total charge qij needed for eq. (16) is obtained as 

the difference between the positive and negative charges at 

each node: 

𝑞 = 𝑞𝑝 − 𝑞𝑛      (25) 

  



 

Fig. 1. Staggered mesh used for FDTD solution of Poisson coupled with 
Drift-Diffusion equations. 

 

Fig. 2. Electric potential (U) distribution in 3 nm space filled with non-ionized 
electrolyte of εr = 2.82, limited by electrodes of 0.1 V potential difference. 

 

 

Fig. 3. Electric potential (U) distribution in 3 nm space limited by electrodes 
of 0.1 V potential difference, filled with electrolyte of εr = 2.82 and static 
charges of molar concentration equal 10 mol/m3: (left) only positive ions and 
(right) positive and negative ions. 

 

 

Fig. 4. Electric potential (U) distribution in 3 nm space limited by electrodes 
of 0.1 V potential difference, filled with electrolyte of εr = 2.82 and static 
positive charges of molar concentration: (a) 1 mol/m3, (b) 10 mol/m3, and 
(c) 15 mol/m3. 

 

Fig. 5. Electric potential (a), total charge (b), and positive charge (c) 
distribution in space limited by electrodes of 0.1 V potential difference, filled 
with electrolyte of εr = 2.82, with initial uniform concentration of positive and 
negative ions of 1 mol/m3 and Dc=10-9 m2/s. 

III. EXAMPLES 

The FDTD equations presented in Section II have been 
implemented in Python, a commonly used scripting language 
for prototyping electromagnetic problems [13]. Three 
different models of increasing complexity have been analyzed 
with the developed FDTD codes. In all three cases, a region of 
3 nm length is terminated by two planar electrodes, one 
grounded and the other at 0.1 V. Such settings as well as the 
applied material parameters are representative of the so-called 
half-cell setup for the testing of battery materials [14]. 

The first problem concerns electrostatics in a region 
without charges. This corresponds to the computation of the 
Laplace equation and finding the electrostatic potential 
distribution. The solution shown in Fig. 2 clearly matches that 
expected for the canonical case of a parallel-plate capacitor. 

In the second problem, ions are uniformly distributed as 
the initial condition. The ions are assumed to be static, which 
has the physical sense of zero diffusivity and mobility. Due to 
the charges, instead of the Laplace equation, the Poisson 
equation is now computed to find the electrostatic potential 
distribution. If densities of negative and positive charges are 
equal, as in the right column of Fig. 3, the net charge is zero 
and the solution is the same as for the Laplace equation in 
Fig. (2). Any net charge will, however, cause a deformation of 
the linear U(x) solution by a parabolic component, as shown 
in the left part of Fig. 3 where only positive charges are 
considered in the modeled space. In Fig. 4, three cases of 
different charge densities are considered. The first considered 
molar density of 1 mol/m3 is too small to cause a visible 
distortion of the linear potential distribution. For the 
increasing molar densities of positive charges, the parabolic 
component of the potential distribution becomes increasingly 
significant and a local maximum of the potential shifts 
towards the grounded (lower potential) electrode.  

In the third problem, the Poisson equation is coupled with 
the drift-diffusion equations. The initial condition is imposed 
by uniformly distributed positive and negative ions, but now 



the ions have finite diffusivity and mobility. The evolution of 
the distribution of charges is found by the time-stepping of 
eqs. (23), (24); at each time step, a new potential distribution 
is obtained by relaxation (9)-(16) leading to new current 
distributions given by (18)(19). The eventual steady-state 
patterns of potential and charges are shown in Fig. (5). In this 
case, an analytical solution is not easily available, so for 
comparison, a FEM solution is obtained using commercial 
COMSOL software [15]. A perfect agreement between the 
FDTD and FEM solutions is demonstrated in Fig. 5c.  

IV. CONCLUSIONS 

 The paper has presented a new extension of the open 

access simulation software platform being developed within 

the European Horizon 2020 Framework projects. The 

platform is dedicated to the modelling of physical processes 

in materials and material test-fixtures and in its previous 

versions [10] has been restricted to the electromagnetic 

phenomena. Herein, the coupling to drift-diffusion equations 

for ions has been developed, which allows for the modelling 

of electrochemistry phenomena in batteries and battery-testing 

equipment, of interest to the automotive industry and beyond. 

 The article has described the equations on the basis of 

which the FDTD coupled solver was created as well as three 

benchmarking examples. Excellent agreement has been 

demonstrated with the analytical solution for the Poisson 

equation and with the FEM solution by commercial software 

for the coupled Poisson-Drift-Diffusion equations. Our FDTD 

software continues to be developed to further expand the 

capabilities for the modelling of multiphysics phenomena. 

The forthcoming versions will be provided in open access [16] 

facilitate the teaching in academia and dissemination in 

industry, in accordance with the European open research 

policies.  
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