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Outline

1. Electromagnetic modelling & simulations — development & applications by QWED.
2. Modelling-based characterisation techniques for 5G materials.

3. Electromagnetic design of 5G antennas.

4. Modelling of mm-wave interactions with tissues (for standards' developments).

5. Conclusions & outlook.
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Modelling — based characterisation of 5G materials

Focus on dielectric resonators:

» proven ultra-high acccuracy in GHz range (0.3% for Dk, IEC 61189-2-721:2015)
» dedicated to low-loss materials & thin material sheets

» ease-of-use

» available on the market

> repeatability & reproducibility for 5G under independent studies (INEMI project)
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How do dielectric resonators work
Dielectfic resonator (top left) n.tp

as a multimode device (see transmission diagramme, top centre)
including TEO1 mode (top right) and many higher modes (lower row)
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What is RESONANCE

Eigenvalue problem Example: , . :
in theoretical electromagnetics: TEO11 mode in cylindrical cavity in applied electromagnetics:

Resonance problem

* Non-zero electromagnetic fields (non-zero
energy) exist in a region without any energy
exchange with the outside (no "feeding").

* There is feeding from the outside, but the
coupling is non-too-strong.

* This is mathematically possible at specific
frequencies (eigenfrequencies). The
corresponding spatial field patterns are called
modes (eigenmodes).

* The corresponding resonant frequencies are
close to eigenfrequencies of the corresponding
isolated problem.

* Inalossless region, the fields exists ("ring") ad

e : . L * Energy loss in a lossy resonating region is
infinitum (sinusoidal oscillations). gy y g reg

| compensated with energy supplied by the feed.
Energy is also lost on internal losses (resistance)
H of the feed.

£

* If there are (not-too-high) losses in the region,
the fields are gradually damped (damped
sinusoidal oscillations) with damping
characterised by quality factor (O-factor) and
frequency little alterated (compared to the
same materials with losses neglected).
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Canonical examples of resonators

Eigenvalue problems: analytical solutions exist for cuboidal and cylindrical cavities:

> Q=2n PXV_T
. fee-eer " .
; b JE Z“Tfﬂaé oo el e
dielectric v [ dielectric

in non-magnetic
low-loss dielectrics

2 2
() () (2] v =1 2] (2]
rme 2w L H Jue \/g | 2\ zR H

—-> application of cavities to Dk measurements appears straightforward! N Ao
(but cavity losses should be minimised) 4\ LY A0
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Canonical examples of resonators

Analytical solutions are for eigenvalue problems.
Measurement problems are deterministic (cavity is coupled to source & load).

)

Signal(in)

.....

PEC

—

Signal(out)

given fixed strength of Signal(in),
at resonance Signal (out) is strongest
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given fixed strength of Uin,
at resonance U, is strongest (U, =zero)
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View Displacement Plane Zoom Save Help

QuickWave model of a cuboidal cavity

PR

Transmission |S21| simulated =
between weakly coupled 57
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QuickWave model of a cylindrical cavity
TMO011 mode TMO021 mode
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compared to rectangular (cuboidal) cavities, typically:
* lower contribution of wall losses
e easier standard manufacturing
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Split-Post Dielectric Resonator method
H-field
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- dielectric resonator

W Ao auxiliary dielectrics

-1 - measured sample
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axis of symmetry

e resonant mode with EM fields mostly confined in and between those ceramic posts - minimial losses in metal enclosure
e H-field is only vertical at the side wall of the enclosure - only circumferential currents in side wall - no radiation through slot
e E-field tangential to SUT = air slots between SUT and posts have negligible effect
e easy SUT insertion through slot, no dismatling, NDT method
* all EM energy injected through the coupling loops in contained within in the SPDR “head” (inside the enclosure)
* an estimated 95% of energy confined in and between the ceramic posts
ﬂn * once-in-a-lifetime calibration suficient for general materials (NOTE: new calibration services dedicated to 5G coming soon!)
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Split-Post Dielectric Resonator method

SUT of €,=¢€/ -j€.”is inserted into DR:
resonant frequency changes from f, to f,
Q-factor changes from Q, to Q..

14

| [ G R CE

7 ac
1 1 &
0 0o = le (v r) 2 (2, p) s

C:I_E[HE(x,y)rdV

field assumed invariant in z-direction field variation in z
Sis called the DR’s head — field changes due to SUT
sign = reflects field patern changes caused by SUT manufacturing tolerances

calibration (based on modelling)
minimises efects of:
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QuickWave modelling of SPDR

«® spdr5_3d_ S -
ile 3D Mode Sketc Annotate Inspect Tools Manage View Environments Get S uickWave -
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Pan the current view (click to cancel) 1 2l

Full 3D model of 10GHz SPDR Axisymmetrical 2D BOR model

in QW-AddIn for Autodesk® Inventor® Software _ _f“" EM information ;
(common environment for modelling & manufacturing) €conomies in computer effort : 10° or more
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QuickWave model of SPDR field distribution

Sample in strong E-field nearly constant

between the two posts

e applicable to thin sheets

* low sensitivity to sample positioning
along the height of the slot




QuickWave model for SPDR loaded with sample
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Field patterns remain practically unchanged
by resonant frequencies and Q-factors change,
providing information about SUT material parameters
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QuickWave model for SPDR loaded with sample

QuickWave simulations of 2.5GHz SPDR performed in automatic Parameter Sweep
for varying sample thickness (colours) and dielectric constant (eps)
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resonant freq. changes are nonlinear
(simple perturbation eqgs. are not accurate enough)
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intermediate parameter is defined
leading to slowly-varying functions
tuned in calibration
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SPDR use in big & small labs...

...ahd at home

EMA 2021 S13, 22 Jan 2021




Surface scanning with SPDR

Obviating the limitations:
e SUT lateral min size ("absolute" EM constraint) - 14..120 mm -» scanning & postprocessing

e spatial resolution 14..120 mm - scanning & postprocessing
e SUT lateral max size —40..150 mm -» increase by change of mechanical construction
manual scanner for large panes of glass automatic scanner
(MW oven window) semiconductor wafers, composites, ceramics

EMA 2021 S13, 22 Jan 2021



Surface scanning with SPDR & resolution enhancement

Meas red scan of O4actor 10! Neconstructod scan of O-lactor 10"

128

& | 118
40 0 ey 0 0 %0

sample resistivity (measured Q-Factor) image post-processed

scan with QWED 10GHz SPDR scanner u.sing SPDB ﬁ9|d. pattern
in H2020MMAMA project simulated in QuickWave

Patterned PEDOT:PSS sample courtesy MateriaNova, Belgium
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SPDR incorporated in 2D scanner (for surface non-uniformities)

|S21]| curves are for several scanning positions:
* curve max indicates resonant freq. (Dk)
* curve 3dB width indicates losses (Df)

A joint product of QWED and Keysight,
developed in the H2020 MMAMA project,
has been acknowledged as
Innovation Radar
of the European research.

It is also marked as
#Women led innovation

QuickWave
EM model

https://www.innoradar.eu/resultbykeyword/gwed
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https://www.innoradar.eu/resultbykeyword/qwed

QuickWave design of mm-Wave resonators

e Standard SPDRs are provided for 1.1GHz — 15 GHz

e Custom designs feasible for 20 GHz, further limitation due to wavelength, manufacturing tolerances & losses
e Other resonator solutions (FPOR, BCDR) designed & recommended >15GHz

Fabry-Perot Open Resonator

»
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Antenna & feed systems design — for various applications ﬂn"

Designing and verifying tracking
I Balanced antipodal Vivaldi antenna %tenna arrays for 5G and automotive radar application capabilities

& 3D radiation pattern at 10 GHz. m

Pyramidal horn antenna for military surveillance
measured (courtesy prof.B.Stec)
& simulated patterns

Aperture-coupled patch antenna
on uniplanar photonic bandgap
substrate
& itsradiation patternat 12 GHz. |~ W k|

Planar antennas for smart

Antenna feed systems designed bio-sensors

by NRAO AT antenna:

L . . .
AR s Cassegrain configuration

BOR FDTD

e Unique, ultra-fast vector 2D Bessel &
FDTD hybrid solver for design &
analysis of devices with axial symmetry

o

T1E s ® 22-m diameter primary
it main reflector

L]
I 2.75-m secondary

v | 000 reflector
- 0.0500

Smartwatch with
embedded patch antenna

wwwwwwwww

Scenarios modelled full-wave:
2500 A on popular PC
5000 A on top-shelf PC

QuickWave 3D results at NRAO, see:
ALMA Memos 381, 343, 325, 278.

EMA 2021 S13, 22 Jan 2021

Corrugated horn antenna for material measurements



Dedicated wizards for 5G patch antenna array project creat

QW-Modeller

eDocument—App. getDocument ("azzay”)
eDocument-Gui . getDocument ("arzay")
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Dedicated simulation & display regimes for 5G patch antenna analysis

3D radiation pattern

Position Rectangular Patch
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patch_video.mp4
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Modelling EM field interaction with tissues Recent research
on 5G safety
Absorption of 5G Radiation in Brain Tissueas  |EEE Access June 2020

a Function of Frequency, Power and Time Tmm——
QuickWave modelling applied

DAVID H. GULTEKIN™'-2 AND PETER H. SIEGEL"%>*#, (Life Fellow, IEEE)

'Zun:,k :rman Mind Brain Behavior Institute, Columbia University, New York City, NY J'[K] 7. USA to in terpret labora tory eXperimen tS
*THz Global, La Canada Flintridge, CA 91011, USA

3Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA 91109, USA . . . . . .

*Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA WI th bo Vln e tlssue Irra dla tlon

4 GHz 39 GHz

Simulated Surface Power D@nmtﬂpW,ﬂ'mmHathH: Vs, Dppth in Brain Tissue, LINEAR SCALE: Pink= 'iEI|.L"."-.|f,.-‘mr'n2 Blua= IZI

T ) 2 . - R " _
50U/ mm? SIIpw " 'B S0uW/mm? l] Eﬂpw.fmr-’ Simulated Surface Power Density (WW/mm?) at 39 GHz vs. Depth in Brain Tissue. LINEAR SCALE: Pink=1mW/mm?; Blue=0

At PMMA Surface (front view) 1mm deep (front view) Emm deep [front view)

A surf i i .
11mm deeg (front view) At PMMA Surface (front view) Imm deep (front view) &mm deep [front view)

Using 1W of incident power,
an average power density of 138, 613 and 16 578 W/m?2 (at 1.9, 4, 39GHz, respectively)

ﬂ" is derived at the tissue surface.
‘n EMA 2021 S13, 22 Jan 2021




Modelling EM field interaction with tissues

Separation of incident and diffracted fields (option implemented per request of P.O.Risman, Malardalen Univesity)

—

A{ /

E-field in an empR/ cavity i

Focusing by the load

ﬂ"" ,exploding egg effect”

E-field in a loaded cavity

i""

Scattered near-filed in cavity

Diffracted field reveals
cause of focusing:

circumferential resonance
EMA 2021 S13, 22 Jan 2021

Detection of inhomogenities in tissues

| AustinMan model*
| converted to

. QuickWave EM

. software for
Malardalen

| University, Sweden

Tumours &
haemorrhages detection
Optimisation of
multiantenna
tomographic systems

* https://sites.utexas.edu/austinmanaustinwomanmodels/
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Conclusions

With this talk we seek collaborations:

on the development of: on behalf of:
* material measurement test-fixtures, e QWED team,
* applicators for processing of materials, * our European project NanoBat,
* software models & workflows * members of broader EU initiatives, e.g.
for 5G materials & applications. European Materials Modelling Council.

THANK YOU!

...and hoping to talk to you in person next year...

N
q." EMA 2021 513, 22 Jan 2021 arBIgt@




