

How to support 5G materials measurements, antenna designs, and standards developments with QuickWave simulations

Malgorzata Celuch*, Marzena Olszewska–Placha*, Janusz Rudnicki

QWED Sp. z o.o., Warsaw, Poland

S13 – 5G Materials and ApplicationsTelecommunications22 Jan 2021

Outline

- 1. Electromagnetic modelling & simulations development & applications by QWED.
- 2. Modelling-based characterisation techniques for 5G materials.
- 3. Electromagnetic design of 5G antennas.
- 4. Modelling of mm-wave interactions with tissues (for standards' developments).
- 5. Conclusions & outlook.

S13 – 5G Materials and ApplicationsTelecommunications22 Jan 2021

Polish high-tech SME - 23 years on the world's market

Business branches presented annually at IEEE IMS Show

Electromagnetic simulation & design software, 3D & BOR 2D tools based on 300+ publications by: prof.W.Gwarek, IEEE Fellow, DML, Pioneer Award dr.M.Celuch, President of QWED PREZES RADY MINISTRÓW

Winne

Test-fixtures for precise material measurements based on 300+ publications by prof.J.Krupka, IEEE Fellow

Consultancy & design services based on EM expertise & tools

team of 10+engineers, 4 PhDs, 2 Profs key areas: MW power appliances, customised resonators, antennas & feeds

R&D projects

FP6 SOCOT – development and validation of an optimal methodology for overlay control in semiconductor industry, for the 32 nm technology node and beyond.

FP6 CHISMACOMB - development, modelling, and applications of chiral materials \rightarrow EM validation of mixing rules

FP7 HIRF SE (High Intensity Radiated Field Synthetic Environment) - numerical modelling framework for aeronautic industry

Eureka FOODWASTE - developing new microwave treatment system for high water content waste

ERA-NET MNT NACOPAN - applications and modelling of nano-conductive polymer composites

NGAM2 – designing an industrial device for thermal bonding of bituminous surfaces with the aid of microwave heating

MMAMA (Microwave Microscopy for Advanced and Efficient Materials Analysis and Production) - accelerating the development of high efficiency solar cells through application ММАМА and enhancement of material measurement techniques

NanoBat - developing a novel nanotechnology toolbox for quality Nano 14 testing of Li-ion and beyond Lithium batteries with the potential to Bat redefine battery production in Europe and worldwide.

Modelling – based characterisation of 5G materials

Focus on dielectric resonators:

- proven ultra-high acccuracy in GHz range (0.3% for Dk, IEC 61189-2-721:2015)
- dedicated to low-loss materials & thin material sheets
- ease-of-use
- > available on the market
- > repeatability & reproducibility for 5G under independent studies (iNEMI project)

How do dielectric resonators work

Dielectric resonator (top left)

as a multimode device (see transmission diagramme, top centre) including TE01 mode (top right) and many higher modes (lower row)

What is **RESONANCE**

Eigenvalue problem in theoretical electromagnetics:

- Non-zero electromagnetic fields (non-zero energy) exist in a region without any energy exchange with the outside (no "feeding").
- This is mathematically possible at specific frequencies (eigenfrequencies). The corresponding spatial field patterns are called modes (eigenmodes).
- In a lossless region, the fields exists ("ring") ad infinitum (sinusoidal oscillations).
- If there are (not-too-high) losses in the region, the fields are gradually damped (damped sinusoidal oscillations) with damping characterised by quality factor (Q-factor) and frequency little alterated (compared to the same materials with losses neglected).

Example: TE011 mode in cylindrical cavity

Resonance problem in applied electromagnetics:

- There is feeding from the outside, but the coupling is non-too-strong.
- The corresponding resonant frequencies are close to eigenfrequencies of the corresponding isolated problem.
- Energy loss in a lossy resonating region is compensated with energy supplied by the feed. Energy is also lost on internal losses (resistance) of the feed.

Canonical examples of resonators

Eigenvalue problems: analytical solutions exist for cuboidal and cylindrical cavities:

Canonical examples of resonators

Analytical solutions are for eigenvalue problems. Measurement problems are deterministic (cavity is coupled to source & load).

given fixed strength of Signal(in), at resonance Signal (out) is strongest

given fixed strength of Uin, at resonance U_R is strongest (U_{LC} =zero)

QuickWave model of a cuboidal cavity

Transmission |S21| simulated between weakly coupled source and probe in a cube 8x10x10 [mm]

Displacement Plane Zoom Save Help

View

ANED

QuickWave model of a cylindrical cavity

TM011 mode

TM021 mode

compared to rectangular (cuboidal) cavities, typically:

- lower contribution of wall losses
- easier standard manufacturing

- resonant mode with EM fields mostly confined in and between those ceramic posts → minimial losses in metal enclosure
- H-field is only vertical at the side wall of the enclosure \rightarrow only circumferential currents in side wall \rightarrow no radiation through slot
- E-field tangential to SUT → air slots between SUT and posts have negligible effect
- easy SUT insertion through slot, no dismatling, NDT method
- all EM energy injected through the coupling loops in contained within in the SPDR "head" (inside the enclosure)
- an estimated 95% of energy confined in and between the ceramic posts
- once-in-a-lifetime calibration suficient for general materials (NOTE: new calibration services dedicated to 5G coming soon!)

Split-Post Dielectric Resonator method

SUT of $\varepsilon_s = \varepsilon_s' - j \varepsilon_s''$ is inserted into DR: resonant frequency changes from f_e to f_s Q-factor changes from Q_e to Q_s .

$$\frac{f_e - f_s}{f_e} \approx \frac{h}{2C} \iint_{S} \left[\varepsilon'_s(x, y) - 1 \right] \left| E(x, y) \right|^2 dS$$
$$\frac{1}{Q_s} - \frac{1}{Q_e} \approx \frac{h}{C} \iint_{S} \varepsilon''_s(x, y) E^2(x, y) dS$$
$$C = \iiint_{V} \left| E(x, y) \right|^2 dV$$

field assumed invariant in z-direction
S is called the DR's head
sign ≈ reflects field patern changes caused by SUT

calibration (based on modelling) minimises efects of: field variation in z field changes due to SUT manufacturing tolerances

QuickWave modelling of SPDR

Full 3D model of 10GHz SPDR in QW-AddIn for Autodesk[®] Inventor[®] Software (common environment for modelling & manufacturing)

Axisymmetrical 2D BOR model full EM information economies in computer effort : 10³ or more

QuickWave model of SPDR field distribution

Sample in strong E-field nearly constant between the two posts

- applicable to thin sheets
- low sensitivity to sample positioning along the height of the slot

QuickWave model for SPDR loaded with sample

Field patterns remain practically unchanged by resonant frequencies and Q-factors change, providing information about SUT material parameters

QuickWave model for SPDR loaded with sample

QuickWave simulations of 2.5GHz SPDR performed in automatic Parameter Sweep for varying sample thickness (colours) and dielectric constant (eps)

-0.2 2,1 -0.6 2,0 1,9 1,8 -1,4 1.7 1,6 -2 1.5 -2.6 1,4 -3.2 1,3 0 90 100

Effective Surface(eps)

resonant freq. changes are nonlinear (simple perturbation eqs. are not accurate enough) intermediate parameter is defined leading to slowly-varying functions tuned in calibration

SPDR use in big & small labs...

...and at home

Surface scanning with SPDR

Obviating the limitations:

- SUT lateral min size ("absolute" EM constraint) 14..120 mm
- spatial resolution 14..120 mm
- SUT lateral max size 40..150 mm

- → scanning & postprocessing
- → scanning & postprocessing
- → increase by change of mechanical construction

manual scanner for large panes of glass (MW oven window)

automatic scanner semiconductor wafers, composites, ceramics

Surface scanning with SPDR & resolution enhancement

sample resistivity (measured Q-Factor) scan with QWED 10GHz SPDR scanner in H2020MMAMA project image post-processed using SPDR field pattern simulated in QuickWave

Patterned PEDOT:PSS sample courtesy MateriaNova, Belgium

SPDR incorporated in 2D scanner (for surface non-uniformities)

QuickWave

EM model

|S21| curves are for several scanning positions:
curve max indicates resonant freq. (Dk)
curve 3dB width indicates losses (Df)

A joint product of QWED and Keysight, developed in the H2020 MMAMA project, has been acknowledged as Innovation Radar of the European research. It is also marked as #Women led innovation

https://www.innoradar.eu/resultbykeyword/qwed

QuickWave design of mm-Wave resonators

- Standard SPDRs are provided for 1.1GHz 15 GHz
- Custom designs feasible for 20 GHz, further limitation due to wavelength, manufacturing tolerances & losses
- Other resonator solutions (FPOR, BCDR) designed & recommended >15GHz

Fabry-Perot Open Resonator

Fully automated wide-band multi-mode measurement: (10-15 min)

- Spectrum: 20-110 GHz
- Dk accuracy: $\Delta \varepsilon / \varepsilon < 0.5 \%$
- Df range: $10^{-5} < \tan \delta < 10^{-2}$
- Sample diameter: > 3 inches
- Sample thickness: < 2 mm

Antenna & feed systems design – for various applications

Large dual reflector antennas: Cassegrain, Gregorian, etc.

Aperture-coupled patch antenna on uniplanar photonic bandgap substrate & its radiation pattern at 12 GHz.

Antenna feed systems designed by NRAO

QuickWave 3D results at NRAO, see: ALMA Memos 381, 343, 325, 278.

Balanced antipodal Vivaldi antenna & 3D radiation pattern at 10 GHz.

AT antenna:

main reflector 2.75-m secondary

reflector

Designing and verifying tracking Antenna arrays for 5G and automotive radar application capabilities

Pyramidal horn antenna for military surveillance measured (courtesy prof.B.Stec) & simulated patterns

> **Planar antennas for smart bio-sensors**

BOR FDTD Cassegrain configuration 22-m diameter primary Unique, ultra-fast vector 2D Bessel & FDTD hybrid solver for design & analysis of devices with axial symmetry **Smartwatch with** embedded patch antenna Scenarios modelled full-wave: **2500** λ on popular PC **5000** λ on top-shelf PC

EMA 2021 S13, 22 Jan 2021

Corrugated horn antenna for material measurements

Dedicated wizards for 5G patch antenna array project creation

Patch Antenna Array - Excitation Feed Excitation **QW-Modeller** parameters Set All Wavefor pulse of spectrum f1<f<f2 @ each patch OW-Modeller 2020 x64 [3D in ai _ 🗆 🗙 ? × Frequer Patch Antenna Array MAN GHz Sketcher Model BHM Mesh ocessings Simulation Windows Help 16 To 16 👷 🖉 GHz Rectangular Patch Patch Beam Steering Position Duration 3 00000 + Xmin: 0.0000000 Length: Amplitude Delay [ns] Theta **+** Ymin: 0.0000000 Width: 2 1.00000 0.00000 Automatic Combo Vier \$ Zmin: 0.0000000 Height: 0.1 OuickWave Task Distance From Cente 8 abels & Attribute X: 0.00000 phase-shift Substrate Medium: 📦 metal Phi X array Right Y: 0.00000 🔊 🔷 QuickWa Length: Thin Layer Rectangular Patch Array Substrat Point Port adjustment Rectangular Patch Array Substra Width: Rectangular_Patch_Array_1_1 Circular Patch Beam Steering... NTF/ABC. Exciting field Ez Excitation Rectangular Patch Array 1 R (ohm): Height: 0.5 By value 2 Rectangular Patch Array 1 3 between Diameter 1: 2 Rectangular Patch Array 1 Rectangular Patch Array 1 5 Medium: 👘 metal Wire Diameter: 0.3000 Diameter 2: 2 Excitation NOT set Rectangular Patch Array 1 patches Rectangular Patch Array 1 Ground OK Cancel Help leiaht: 0.1 Beam Steering NOT set Rectangular Patch Array 1 Rectangular_Patch_Array_2 Height: 0.1 2 Rectangular Patch Array 2 Medium: metal NTF/ABC NOT set 🌁 Patch Antenna Array - Beam Steering 📍 2 Rectangular Patch Array 2 Rectangular_Patch_Array_2_4 Medium: 🞯 metal 🗸 Thin Laver 2 Rectangular Patch Array 2 5 Thin Layer Beam Steering Patch Geometry User defined Frequency [GHz]: 1.00000 ÷ Auto Dimensions Set.. Theta ÷ Theta [deg] 0.00000 main beam Medium: 👘 metal + Phi [deg]: 0.00000 angle Phi X Number of Columns: 4 ≑ Number of Rows: 3 + Spacing: 1.5 Spacing: 1.5 OK Help Cancel Margin: 1.5 Margin: 1.5 📃 Patch Antenna Array - NTF/... ? OK Apply Clear Cancel Help ▼ NTF/ABC View / Data 🛤 array : 1* 🔀 Python console Settings App.ActiveDocument=App.getDocument("array ✓ Various patch shapes, incl. user-defined Gui.ActiveDocument=Gui.getDocument("array" NTF Distance 3.00 ÷ ÷ ABC Distance 4.00 d: MURBox - array.MURBox, (68,1386, 46,3011, 20,6 Gestur 126.41 mm x 105.44 mm geometries MUR Permittivity (effective) 1.00000 ✓ Automatic substrate/ground inclusion, incl. PML 4 Thickness (No of cells) 8 dimensions auto-scaling Profile Paraboli ✓ Automatic matrix arrangement A 1.00000 Choice of suitable EMA 2021 S13. 22 Jan 2021 absorbing BC OK Cancel Help

Dedicated simulation & display regimes for 5G patch antenna analysis

Modelling EM field interaction with tissues

Absorption of 5G Radiation in Brain Tissue as a Function of Frequency, Power and Time

¹Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY 10027, USA ²THz Global, La Cañada Flintridge, CA 91011, USA

³Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA 91109, USA ⁴Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

4 GHz

Simulated Surface Power Density (µW/mm²) at 4 GHz vs. Depth in Brain Tissue. LINEAR SCALE: Pink=50µW/mm²; Blue=0

Recent research on 5G safety June 2020

QuickWave modelling applied to interpret laboratory experiments with bovine tissue irradiation

Simulated Surface Power Density (µW/mm²) at **39 GHz** vs. Depth in Brain Tissue. LINEAR SCALE: Pink=1mW/mm²; Blue=0

Using 1W of incident power, an average power density of 138, 613 and 16 578 W/m2 (at 1.9, 4, 39GHz, respectively) is derived at the tissue surface.

Modelling EM field interaction with tissues

Separation of incident and diffracted fields (option implemented per request of P.O.Risman, Malardalen Univesity)

* https://sites.utexas.edu/austinmanaustinwomanmodels/

Acknowledgements

Winner

The work presented has received funding from the

European Union's Horizon 2020

research and innovation programme

under grant agreement

NanoBat No 861962.

(website: www.nanobat.eu)

Simulations conducted with QuickWave EM software, developed & commercialised by QWED.

The original designs of QWED resonators for material measurements from Prof. Jerzy Krupka, e.g.:

J. Krupka, A. P. Gregory, O. C. Rochard, R. N. Clarke, B. Riddle, and J. Baker-Jarvis, "Uncertainty of complex permittivity measurements by split-post dielectric resonator technique", J. Eur. Ceramic Soc., vol. 21, pp. 2673-2676, 2001.

J. Krupka and J. Mazierska, "Contactless measurements of resistivity of semiconductor wafers employing single-post and split-post dielectric-resonator techniques," *IEEE Trans. Instr. Meas.*, vol. 56, no. 5, pp. 1839-1844, Oct. 2007.

Scenarios of microwave medical applicators from Per O. Risman, Microtrans AB & Malardalen University, Sweden.

Conclusions

With this talk we seek collaborations:

on the development of:

on behalf of:

QWED team,

- material measurement test-fixtures,
- applicators for processing of materials,
- software models & workflows for 5G materials & applications.

- our European project NanoBat,
- members of broader EU initiatives, e.g. European Materials Modelling Council.

THANK YOU!

...and hoping to talk to you in person next year...

